首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water flooding of the flow channels is one of the critical issues to the design and operation of proton exchange membrane fuel cells (PEMFCs). The liquid water and total pressure drop characteristics both in the anode and cathode parallel flow channels of an operating PEMFC were experimentally studied. The gas/liquid two-phase flow both in the anode and cathode flow channels was observed, and the total pressure drop between the inlet and outlet of the flow field was measured. The effects of cell temperature, current density and operating time on the total pressure drop were investigated. The results indicated that the total pressure drop in the flow channels mainly depends on the resistance of the liquid water in the flow channels to the gas flow, and the different flow patterns distinguish the total pressure drops in the flow field. Clogging by water columns result in a higher pressure drop in the flow channels. The total pressure drop measurement can be considered as an in situ diagnoses method to characterize the degree of the flow channels flooding. The liquid water in the cathode flow channels was much more than that in the anode flow channels. The pressure drop in the cathode flow channels was higher than that in the anode flow channels. During the fuel cell operation, the cell performance decreased gradually and the pressure drop both in the anode and the cathode flow channels increased. The rate of flooding at the cathode side reached 49.56% under experimental conditions after 78 min of operation. However, it was zero at the anode side.  相似文献   

2.
Current distribution in a proton exchange membrane fuel cell (PEMFC) is significantly influenced by reactant flow configurations. In this study, the current distribution has been measured experimentally using a segmented flow-field plate and printed circuit board (PCB). Local current distributions for a PEMFC with serpentine flow field and three different flow arrangements including co-flow, cross-flow, and counter-flow arrangements for the anode and cathode streams are investigated along with the effect of flow channel orientation. It is shown that the counter-flow arrangement yields most uniform distribution for the current density, whereas the co-flow arrangement results in a considerable variation in the current density from the reactant gas stream inlet to exit. Flow channel orientation can also impact the cell performance and the current distribution appreciably. The limiting hydrogen concentration at the anode side due to the low stoichiometry condition can have a predominant effect on the current distribution and cell performance.  相似文献   

3.
K.‐M. Yin  H.‐K. Hsuen 《Fuel Cells》2013,13(6):1213-1225
One‐dimensional model on the membrane electrode assembly (MEA) of proton exchange membrane fuel cell is proposed, where the membrane hydration/dehydration and the possible water flooding of the respective cathode and anode gas diffusion layers are considered. A novel approach of phase‐equilibrium approximation is proposed to trace the water front and the detailed saturation profile once water emerges in either anode or cathode gas diffusion layer. The approach is validated by a semi‐analytical method published earlier. The novel approach is applicable to the polarization regime from open circuit voltage to the limiting current density under practical operation conditions. Oxygen diffusion is limited by water accumulation in the cathode gas diffusion layer as current increases, caused by excessive water generation at the cathode catalyst layer and the electro‐osmotic drag across the membrane. The existence of liquid water in the anode gas diffusion layer is predicted at low current densities if high degrees of humidification in both anode and cathode feeds are employed. The influences of inlet relative humidity, imposed pressure drop, and cell temperature are correlated well with the cell performance. In addition, the overpotentials attributed from individual components of the MEA are delineated against the cell current densities.  相似文献   

4.
质子交换膜燃料电池两维、两相流动模型   总被引:1,自引:0,他引:1  
提出了考虑电池内部两相流动的质子交换膜燃料电池数学模型,模拟了阳极、阴极两侧的流道和扩散层中同时发生两相流动时电池内部的各种传递特性,并用实验数据验证了该模型的准确性。模拟结果显示,当电池阴极扩散层中有液态水存在时会大大降低膜中的局部电流密度;质子交换膜中水的净通量方向可正、可负,因此电池的增湿策略应根据不同的运行工况而不断变化。  相似文献   

5.
Adequate water management is crucial to increase stability and durability of Polymer Electrolyte Membrane Fuel Cells. In this paper, a test rig suitable for water balance and nitrogen crossover studies was built around a hydrogen‐air segmented cell and used to indirectly assess flooding or drying conditions in specific zones of the active cell area. In particular, the anode of the segmented cell was operated in recirculation mode with continuous water removal. Current density distribution (CDD) diagrams were obtained for different anode operating parameters, namely, the recirculated gas flow rate, anode pressure, and time between purges. Water accumulation at the electrodes was assessed from CDD diagrams and confirmed using water balance and flow‐patterns calculations. It was concluded that lower recirculation flow rates led to flooding due to decreased water removal capabilities at the anode. For higher recirculation flow rates, drying was observed in one zone of the cell but homogeneous CDD in the other. Finally, the use of partially segment bipolar plates was proposed to increase the in‐plane electrical resistance between adjacent segments. The partial segmentation increased the segment to segment in‐plane electrical resistance between 14 and 21% and decreased the through‐plane to in‐plane resistance ratio by 17%.  相似文献   

6.
Performance losses due to flooding of gas diffusion layers (GDLs) and flow fields as well as membrane dehydration are two of the major problems in PEFC. In this investigation, the effect of GDL on the cell water management in PEFC is studied using segmented and single cell experiments. The behaviour of four different commercial GDLs was investigated at both high and low inlet humidity conditions by galvanostatic fuel cell experiments. The influence of varying reactant humidity and gas composition was studied. The results at high inlet humidity show that none of the studied GDLs are significantly flooded on the anode side. On the other hand, when some of the GDLs are used on the cathode side they are flooded, leading to increased mass transfer losses. The results at low inlet humidity conditions show that the characteristics of the GDL influence the membrane hydration. It is also shown that inlet humidity on the anode side has a major effect on flooding at the cathode.  相似文献   

7.
为了研究常规流场下阴、阳极增湿程度对电池内部水分布、传递、膜性能及水拖曳系数等的影响,对PEMFC进行二维建模,应用控制容积法对控制方程进行离散,然后求解,得到了电池内部水和反应气浓度、速度分布、膜中电流密度、电势分布及膜中水分布,考察了气体不同增湿程度对质子交换膜电导率及电池内部传质的影响.结果表明,PEMFC中水综合拖曳系数随着阳极加湿程度的增加而增大,随阴极增湿程度的增加而减小,但阳极增湿对水综合拖曳系数的影响比同增湿程度下阴极增湿对水综合拖曳系数的影响大得多.同时,随着阳极加湿程度的升高,质子交换膜(PEM)电导率急剧升高,而阴极加湿程度对PEM电导率的影响只是停留在较小的电流范围之内.故PEMFC在小电流密度工作时,应该使阳极气体充分增湿;而在大电流密度工作时,应该适当降低阳极的增湿程度以降低阴极两相流的机会,从而改善阴极的传质状况.  相似文献   

8.
Water management is of great importance to maintain performance and durability of proton exchange membrane fuel cells. This paper presents a novel proton exchange membrane (PEM) fuel cell with a humidification zone in the membrane electrode assembly (MEA) of each cell, in which the moisture of the cathode exhaust gas could transfer through the membrane to humidify anode or cathode dry gas. With a simple model, the relative humidity (RH) of the dry air exhaust from a membrane humidifier with 100% RH stream as a counter flow is calculated to be 60.0%, which is very close to the experimental result (62.2%). Fuel cell performances with hydrogen humidifying, air humidifying and no humidifying are compared at 50, 60 and 70˚C and the results indicate that humidifying is necessary and the novel design with humidifying zone in MEA is effective to humidify dry reactants. The hydrogen humidifying shows better performance in short term, while water recovered is limited and the stability is not as good as air hu-midifying. It is recommended that both air and hydrogen should be humidified with proper design of the humidifying zones in MEA and plates.  相似文献   

9.
Proper water management is vital to ensuring successful performance of proton exchange membrane fuel cells. The effectiveness of the direct liquid water injection scheme and the interdigitated flow field design towards providing adequate gas humidification to maintain membrane optimal hydration and alleviating the mass transport limitations of the reactants and electrode flooding is investigated. It is found that the direct liquid water injection used in conjunction with the interdigitated flow fields as a humidification technique is an extremely effective method of water management. The forced flow-through-the-electrode characteristic of the interdigitated flow field (1) provides higher transport rates of reactant and products to and from the inner catalyst layers, (2) increases the hydration state and conductivity of the membrane by bringing its anode/membrane interface in direct contact with liquid water and (3) increases the cell tolerance limits for excess injected liquid water, which could be used to provide simultaneous evaporative cooling. Experimental results show substantial improvements in performance as a result of these improvements.  相似文献   

10.
The importance of reducing water crossover from anode to cathode in a direct methanol fuel cell (DMFC) has been well documented, especially if highly concentrated methanol fuel is to be used. A low-α membrane electrode assembly (MEA) with thin membrane is key to achieving this goal. The low water crossover from anode to cathode for these types of MEAs has traditionally been attributed to the use of a hydrophobic cathode micro-porous layer (MPL). However, it has recently been discovered that a hydrophobic anode MPL also reduces the water crossover, possibly even more significantly than a hydrophobic cathode MPL. In this work, we develop and use a 1D, two-phase transport model that accounts for capillary-induced liquid flow in porous media to explain how a hydrophobic anode MPL controls the water crossover from anode to cathode. We further show that a lower water crossover can lead to a lower methanol crossover via dilution of methanol in the anode catalyst layer. Finally, we perform a parametric study and show that a thicker anode MPL with greater hydrophobicity and lower permeability is more effective in reducing the water crossover.  相似文献   

11.
质子交换膜燃料电池水传递模型   总被引:31,自引:3,他引:28       下载免费PDF全文
提出了用于研究质子交换膜燃料电池膜中水分布、水传递量分布、电流密度分布等的二维数学模型;系统地考察了电池温度、阴阳极压力差、增湿程度、质子膜厚度等条件对水的传递和膜中水分布的影响.计算结果表明:①阳极增湿能够提高气体进口段膜阳极侧水的含量;②使用越薄的质子膜,越能提高膜中水的含量;③阳极增湿程度越大,由阳极向阴极迁移的水量越多.  相似文献   

12.
A new method of measuring current distribution in a polymer electrolyte fuel cell of active area 100cm2 has been demonstrated, using a printed circuit board (PCB) technology to segment the current collector and flow field. The PCB technique was demonstrated to be an effective approach to fabricating a segmented electrode and provide a useful tool for analysing cell performance at different reactant gas flow rates and humidification strategies. In this initial chapter of work with the segmented cell, we describe measured effects on current distribution of cathode and anode gas stream humidification levels in a hydrogen/air cell, utilizing a NafionTM 117 membrane and single serpentine channel flow fields, and operating at relatively high gas flow rates. Effects of the stoichiometric flow of air are also shown. A clear trend is seen, apparently typical for a thick ionomeric membrane, of lowering in membrane resistance down the flow channel, bringing about the highest local current density near the air outlet. This trend is reversed at low stoichiometric flows of air. At an air flow rate less than three times stoichiometry, the local performance starts to drop significantly from inlet to outlet, as local oxygen concentration drop overshadows the lowering in resistance along the direction of flow.  相似文献   

13.
A corona discharge reactor consisting of a hollow needle cathode and a net anode was used to remove benzene, toluene, and chlorobenzene in a synthetic air stream. Two gas flow directions were adopted to examine the contributions of the separated reaction zones, a high‐energy corona zone at the needle cathode tip and a relatively large zone outside it. The target gas was fed in the corona zone through the needle cathode and exhausted through the net anode. Inversely, the gas was fed in through the net anode and exhausted through the needle cathode. It was observed that the removal efficiency of these components did not depend on the gas flow directions, indicating that the spatial distribution of the reactivity was not influential on the removal efficiency of the three target gas species. This means that the high electric field zone around the needle cathode tip would overwhelm the surrounding low‐energy zone. In addition, the contribution of ozone reaction was observed as insignificant. Considering a reported ozone distribution, this result also indicates that the main reactive zone is the corona zone at the cathode tip.  相似文献   

14.
This work presents a new concept for realising a reference electrode configuration in a PEM fuel cell by means of laser ablation. The laser beam is used to evaporate a small part of the electrode of a catalyst-coated membrane (CCM) to isolate the reference electrode from the active catalyst layer. This method enables the simultaneous ablation of the electrodes on both sides of the CCM because the membrane is transparent for the laser beam. Therefore, a smooth electrode edge without electrode misalignment can be realised. A test fuel cell was constructed which together with the ablated CCM enables the separation of the total cell losses during operation into the cathode, anode and membrane overpotentials in PEFC as well as in DMFC mode. The methanol tolerance of a selenium-modified ruthenium-based catalyst (RuSe x ) was investigated under real fuel cell conditions by measuring polarisation curves, electrochemical impedance spectroscopy (EIS) and current interrupt measurements (CI).  相似文献   

15.
质子交换膜燃料电池二维全电池两相流综合数值模型   总被引:1,自引:1,他引:1  
张亚  朱春玲 《化工学报》2008,59(1):173-181
针对直通道质子交换膜燃料电池(PEMFC)建立了一个二维全电池综合数值模型,模型综合考虑参与电化学反应的三个要素反应物质、电子和质子的传输过程以及液态水的淹没和膜内水传输现象。研究了供气压力、液态水淹没对电池性能的影响;比较了不同输出电压、供气湿度等条件对阴极液态水饱和度分布以及电解质膜含水率的影响;预测了基准供气状态下电池的极化曲线和文献报道的实验结果吻合很好。计算结果显示:输出电压越小液态水淹没电极现象越严重;阴极液态水的生成有利于膜的浸润保持较高电导率,但是会淹没电极使有效电极面积减小,导致电池性能下降。  相似文献   

16.
Dynamics of polymer electrolyte fuel cells undergoing load changes   总被引:1,自引:0,他引:1  
Yun Wang 《Electrochimica acta》2006,51(19):3924-3933
Numerical simulations are carried out for a single-channel polymer electrolyte fuel cell (PEFC) undergoing a step increase in current density. The objective is to elucidate profound interactions between the cell voltage response and water transport dynamics occurring in a low-humidity PEFC where the membrane hydration and hence resistance hinges upon the product water. Detailed results are presented to show that a step increase in the current density leads to anode dryout due to electroosmotic drag, while it takes several seconds for water back-diffusion and anode humidified gas to re-wet the anode side of the polymer membrane. The water redistribution process is controlled by water production, membrane hydration, electroosmotic drag, and water diffusion in the membrane. The anode dryout results in a substantial drop in cell voltage and hence temporary power loss. Under extreme situations such as dry anode feed, large step increase in the current density, and/or lower temperatures, the cell voltage may even reverse, resulting in not only power loss but also cell degradation. Finally, the dynamics of current distribution after a step change in gas humidification is numerically examined.  相似文献   

17.
A 2D isothermal axisymmetric model of an anode‐supported solid oxide fuel cell has been developed. The model, which is based on finite element approach, comprises electronic and ionic charge balance, Butler–Volmer charge transfer kinetic, flow distribution and gas phase mass balance in both channels and porous electrodes. The model has been validated using available experimental data coming from a single anode‐supported cell comprising Ni–YSZ/YSZ/LSM–YSZ as anode, electrolyte and cathode, respectively. Hydrogen and steam were used as fuel inlet and air as an oxidant. The validation has been carried out at 1 atm, 1,500 ml min–1 air flow rate and three different operating conditions of temperature and fuel flow rate: 1,073 K and 400 ml min–1, 1,073 K and 500 ml min–1, and 1,003 K and 400 ml min–1. The polarization and power density versus current density curves show a good agreement with the experimental data. A parametric analysis has been carried out to highlight which parameters have main effect on the overall cell performance as measured by polarization curve, especially focusing on the influence of two geometrical characteristics, temperature and some effective material properties.  相似文献   

18.
W.W. Yang 《Electrochimica acta》2007,52(20):6125-6140
A two-dimensional, isothermal two-phase mass transport model for a liquid-feed direct methanol fuel cell (DMFC) is presented in this paper. The two-phase mass transport in the anode and cathode porous regions is formulated based on the classical multiphase flow in porous media without invoking the assumption of constant gas pressure in the unsaturated porous medium flow theory. The two-phase flow behavior in the anode flow channel is modeled by utilizing the drift-flux model, while in the cathode flow channel the homogeneous mist-flow model is used. In addition, a micro-agglomerate model is developed for the cathode catalyst layer. The model also accounts for the effects of both methanol and water crossover through the membrane. The comprehensive model formed by integrating those in the different regions is solved numerically using a home-written computer code and validated against the experimental data in the literature. The model is then used to investigate the effects of various operating and structural parameters, such as methanol concentration, anode flow rate, porosities of both anode and cathode electrodes, the rate of methanol crossover, and the agglomerate size, on cell performance.  相似文献   

19.
为了研究扩散层各向异性对电池性能的影响,以XD=Di,j ^y/Di,j ^x 为各向异性的表征,建立了使用常规流场的质子交换膜燃料电池二维传质模型.考虑了阴阳极内物质的对流和扩散、水和质子在膜内传递以及催化层的电化学反应.利用有限差分法对控制方程进行离散,采用逐次超松驰法求解得到了阴阳极反应气体和水的浓度分布以及催化层电流密度、膜中水含量、膜中电势和电流密度的分布.分析结果表明:在1≤XD≤4时增大XD有利于提高电池性能,但随着XD增大其对电池性能的影响逐渐减小;并且XD对电池性能的影响主要体现在对阴极和膜性能的影响上,其对阳极性能的影响甚微.  相似文献   

20.
Mathematical model of the PEMFC   总被引:11,自引:0,他引:11  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号