首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The positive temperature coefficient of resistivity (PTCR) effect of a barium metaplumbate/polyethylene [(BaPbO3)/PE] composite with 12 vol% of BaPbO3 was studied. The composite samples were prepared by hot-pressing a mixture of BaPbO3 ceramic and high-density polyethylene powders around the melting point of polyethylene. The composites exhibit a pronounced PTCR effect of up to a six-decade increase in resistivity within a narrow range of temperature (∼10°C). The dependences of the room temperature resistivity and the magnitude of the resistivity jump on the pressing and annealing temperature, and the electrical behavior after repeated heating-cooling cycles were investigated. The fracture surfaces of the composite samples were examined in a scanning electron microscope in order to correlate the electrical behavior with the microstructure.  相似文献   

2.
In this article, the positive temperature coefficient (PTC) and interaction based on low‐density polyethylene (LDPE) filled with the loading of graphite (G) powder have been investigated. The dependence of the room temperature resistivity on filler content showed the significant decrease. The PTC behavior enhanced with increasing graphite content but this was not always the case. The maximum PTC effect was observed in LDPE/G composites (G, 45 wt %) with the relatively low room temperature resistivity. The thermal behavior was measured by differential scanning calorimetry (DSC). The structure characteristic for LDPE/G composites was examined by X‐ray diffraction (XRD), field‐emission scanning electron microscopy (SEM), and stress–strain test. The fact was revealed that the slight interaction between LDPE matrix and graphite may lead to change the thermal‐electric properties of the PTC materials. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Positive temperature coefficient of resistivity (PTCR) characteristics of (high density polyethylene) HDPE–Cu composites has been investigated with reference to the conventional HDPE–CB (carbon black) composites. Plot of resistivity against temperature of HDPE–CB composites showed a sudden rise in resistivity (PTC trip) at 127°C, close to the melting temperature of HDPE. However, the PTC trip temperature (98°C) for HDPE–Cu composites was appeared well below the melting temperature of HDPE. Addition of 1 phr nanoclay in the composites resulted in an increase in PTC trip temperature of HDPE–Cu composites, whereas no significant effect of nanoclay on PTC trip temperature was evident in case of HDPE–CB–clay composites. We proposed that the PTC trip temperature in HDPE–Cu composites was governed by the difference in coefficient of thermal expansion (CTE) of HDPE and Cu. The room temperature resistivity and PTC trip temperature of HDPE–Cu composites were very much stable upon thermal cycling. DMA results showed higher storage modulus of HDPE–Cu composites than the HDPE–CB composites. Thermal stability of HDPE–Cu composites was also improved compared to that of HDPE–CB composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Several carbon blacks with surface areas from 105 to 1353 m2/g were used to produce composites through melt compounding with a high‐density polyethylene matrix. The electrical behavior of the obtained composites was investigated by the measurement of their resistivity as a function of the carbon black content and type at various temperatures and times during isothermal annealing treatments. The percolation threshold markedly decreased as the carbon black surface area increased, reaching a minimum value of 1.8 vol % for the carbon black with a surface area of 1353 m2/g. The resistivity passed through a maximum as the test temperature increased. Moreover, the analysis of the experimental data evidenced that the host high‐density polyethylene matrix and the conductive carbon black network rearranged during the isothermal thermal treatments, causing a resistivity decrease. This rearrangement became less and less important as the carbon black surface area increased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

5.
Positive temperature coefficient of resistivity (PTCR) behavior of poly(methyl methacrylate) PMMA/silver (Ag)‐coated glass bead composites has been investigated with reference to the conventional PMMA/carbon black (CB) composites. The PMMA/CB composites showed a sudden rise in resistivity (PTC trip) at 115°C, close to the glass transition temperature (T g, 113°C) of the PMMA. However, the PTC trip temperature (92°C) of PMMA/Ag‐coated glass bead composites was appeared well below the T g of PMMA. The room temperature resistivity and PTC trip temperature of the composites were also very much stable upon thermal cycling. Addition of 1 phr of nanoclay increased the PTC trip temperature of PMMA/CB composites to 120°C, close to the T g (118°C) of PMMA/clay nanocomposites, while PMMA/clay/Ag‐coated glass bead nanocomposites showed the PTC trip at 98°C. We proposed that the mismatch in coefficient of thermal expansion (CTE) between PMMA and glass beads played a key role that led to a disruption in continuous network structure of Ag‐coated glass beads even at a temperature well below the T g of PMMA. The decrease in dielectric permittivity of PMMA/Ag‐coated glass bead composites on increasing frequency indicated possible use of the PTC composites as dielectric material. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

6.
Steady state shear flow of wood/high density polyethylene composites is investigated through capillary rheometry to gain better insight into rheology, extrudate distortions, and wall slip phenomena of wood/polymer composite melts. Effects of filler content and temperature on onset and end of stick‐slip transition, in terms of shear rate and shear stress, are also studied. Results show that shear rates at stick‐slip transition decrease while corresponding shear stresses increase with the addition of filler. Furthermore, temperature raises the shear rate and the shear stress at which the transition occurs. It is observed a log‐linear relationship in the plots of wall slip versus the shear stress, in particular, increasing the filler content and decreasing the temperature, these plots are shifted to higher shear stress, as a consequence of viscosity increment. Wall slip and filler content play a fundamental role in surface morphology; specifically, extrudates become smoother with increasing filler content and shear rate, whose increment always results in a rise of the wall slip. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

7.
The electrical resistivity of high‐density polyethylene (HDPE) loaded with carbon black (CB) blends was evaluated as a function of the blending time and the melt index of HDPE. The relationship between the positive temperature coefficient effect and the room temperature volume resistivity was investigated. The positive temperature coefficient effect and reproducibility were improved significantly when the blending time of HDPE and CB was comparatively long. The effects of 60Co γ‐ray and electron beam irradiation on the positive and negative temperature coefficient behavior of the blends were studied. The effect of thermal aging on the volume resistivity was studied to ascertain the structural stability. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2440–2446, 2002  相似文献   

8.
The effects of the filler content and the filler size on the crystallization and melting behavior of glass bead‐filled low‐density polyethylene (LDPE) composites have been studied by means of a differential scanning calorimeter (DSC). It is found that the values of melting enthalpy (ΔHc) and degree of crystallinity (xc) of the composites increase nonlinearly with increasing the volume fraction of glass beads, ϕf, when ϕf is greater than 5%; the crystallization temperatures (Tc) and the melting temperatures (Tm) of the composites are slightly higher than those of the pure LDPE; the effects of glass bead size on xc, Tc, and Tm are insignificant at lower filler content; but the xc for the LDPE filled with smaller glass beads is obviously greater than that of the filled system with bigger ones at higher ϕf. It suggests that small particles are more beneficial to increase in crystallinity of the composites than big ones, especially at higher filler content. In addition, the influence of the filler surface pretreated with a silane coupling agent on the crystallization behavior are not too outstanding at lower inclusion concentration. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 687–692, 1999  相似文献   

9.
Polyethylene (PE)‐filled with carbon black (CB) is a prototypical composite that displays resistance switching. These materials can exhibit either a positive temperature coefficient (PTC) or negative temperature coefficient (NTC). The CB‐filled semicrystalline polymer composites ideally need antioxidants, which stabilize the composites against thermooxidative degradation, because they should be resistant to the severe conditions of high temperature. The characterization of PTC materials is affected by the crystallinity of the polymer, and the crystallinity of the polymer is changed with thermal ageing treatment. Thermal ageing of PTC samples was conducted in an oven in the range 50–140°C, in air. The composites, containing 0.5–3% (by weight) Irganox 1076 (Ciba‐Geigy), were irradiated under nitrogen at room temperature with different doses of gamma rays from a 60Co source. The resulting composites were analyzed by differential scanning calorimetry, gel fractionation, X‐ray diffraction, and dynamic mechanical analysis. The conductivity of the composites depended on the amounts of antioxidants and the duration of the thermal ageing treatment. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2316–2322, 2003  相似文献   

10.
Ying Xi  C.K. Chiang 《Carbon》2007,45(6):1302-1309
By adding the short carbon fibers to the polyethylene matrix, excellent positive temperature coefficient (PTC) effect was achieved. Alternating current (AC) electrical properties of this PTC composite were studied as a function of frequency. The analysis of AC electrical conductivity and dielectric permittivity was done by using a micro-morphology model, which included conductive carbon fiber-aggregates in series with an equivalent circuit of resistor-capacitor parallel that represent the blends at these contact regions. The observed electrical properties of PTC composites were due to the breakage of the conduction networks caused by thermal expansion. The dielectric behaviors of the interfacial polarization between polyethylene matrix and carbon fibers could be described by Maxwell-Wagner-Sillars relaxation when the composite was heated above 116 °C. The analysis of the electric modulus in the frequency range from 100 Hz to 10 MHz revealed that the interfacial relaxation followed the Cole-Davidson distribution of relaxation time.  相似文献   

11.
The effect of nanoclay on the plane‐strain fracture behavior of pristine High density polyethylene (HDPE) and recycled HDPE blends was studied using the essential work of fracture (EWF) concept. The failure mode of EWF tested specimens was found to be associated with the specific non‐EWF (βBwp,B). Adding 6‐wt% of nanoclay to pristine HDPE and 2‐wt% to recycle‐blends greatly decreased the βBwp,B values and led to a transition from ductile to brittle failure mode. A fractographic study revealed that the difference in failure modes was caused by the changes in micro and macro morphologies, which could be related with the specific EWF (we,B). In the ductile failure, we,B is governed by the fibril size; adding nanoclay and recycled HDPE to pristine HDPE decreased the fibril size and subsequently lowered the we,B value. In the brittle failure, the we,B value was enhanced by creating a rough fracture surface. Adding nanoclay to pristine HDPE, a steadily decrease in we,B was measured until 4‐wt% after which the change was insignificant. Conversely, nanoclay content more than 2‐wt% in recycle‐blends greatly decreased the we,B value. A transition map was constructed to illustrate the potential failure mode and the associated fracture morphology based on the tested material compositions. POLYM. ENG. SCI., 56:222–232, 2016. © 2015 Society of Plastics Engineers  相似文献   

12.
Relaxation and stress–strain behavior of SAN–glass bead composites are studied above the glass transition temperature. The strain imposed on the polymeric matrix of the composite is defined as ?p = ?c/(1 ? ??). Stress relaxation data for the filled polymer which is independent of strain can be calculated by multiplying the relaxation modulus (at a certain strain) by (1 + ?p). Stress–strain curves at constant strain rate and for different concentrations of the filler can be shifted to form a master curve independent of filler content if the tensile stress is plotted versus ?p. The relaxation modulus increases with increasing the filler concentration and can be predicted by a modified Kerner equation at 110°C.  相似文献   

13.
The primary purpose of this study was to prepare a new type of silver‐coated hollow glass microspheres and to make available this facility for the fabrication of thermally conductive polymeric composites based on ethylene–vinyl acetate (EVA) copolymer. Thermally conducting composites could be produced with a silver coating around the hollow glass microspheres, despite the low silver volume content. The experimental results are discussed and compared to various theoretical models. The thermal diffusivity and the specific heat of the composites were also characterized and are reported. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Maleic anhydride‐grafted polyethylene (MAPE) is investigated as a compatibilizer of polyethylene/organoclay nanocomposite. With MAPE help, partial exfoliation of the organoclay occurs in the nanocomposites with the melt compounding method for organoclay loading up to 8.0 wt%. Investigation of the rheological behaviors shows that at high frequencies or shear rates, the viscosity is essentially unaffected by the presence of organoclay; however, at low frequencies or shear rates, viscoelastic behavior alters dramatically, and this is attributed to the presence of anisotropic stacks of randomly oriented organoclay sheets and the formation of network structures. The important observations are firstly the initial stress overshooting observed in steady shear. At low shear rates, stress is much greater at the initial stage than the stress at the steady state; however, it can be eliminated by preshear at low shear rates, which means that preshearing can effectively break down the network structures and align the organoclay. Second, the normalized stress at the overshoot point is a function of the critical strain unit. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

15.
16.
The electrical‐resistivity/temperature behaviors of low‐density polyethylene (LDPE)/carbon black (CB) composites irradiated with 60Co γ rays were studied. The experimental results showed that the irradiated composites could be separated into insoluble crosslinking networks with CB (gel) and soluble components (sol) by solvent‐extraction techniques. When the sol of an irradiated LDPE/CB composite was extracted, the electrical conductivity of the system increased. The positive‐temperature‐coefficient (PTC) and negative‐temperature‐coefficient (NTC) intensities of the gels of the irradiated composites became extremely small and independent of the radiation dose. The sols and gels of the irradiated LDPE/CB composites, which had different thermal behaviors, played important roles in the appearances of the PTC and NTC effects. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 700–704, 2005  相似文献   

17.
In this work, the positive‐temperature‐coefficient (PTC) effect of resistivity of low density polyethylene/graphite powder (45%) composites (LDPE/GP) in the presence of graphene before and after crosslinked was comparatively investigated by differential scanning calorimetry (DSC), X‐ray diffraction (XRD), scanning electron microscopy, Raman spectrum, and resistivity‐temperature test. The composites showed the repeatability of the PTC effect with heating cycles and a certain improvement in the room temperature resistivity. After crosslinked, the composites presented a higher PTC trip temperature at about 140°C than pure LDPE (Tm = 112°C), and stronger PTC intensity than room temperature resistivity (over 5 orders of magnitude). The results from DSC, XRD, and Raman spectrum indicated that the addition of graphene resulted in the gradual enhancement in the crystallization of LDPE matrix, which was the origin of the improvement of the PTC behavior of the composites. As a result, we could conclude that the additional conducting filler could improve the PTC effect of the conducting composite system. POLYM. COMPOS., 35:1453–1459, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
Composites of different lignocellulosic materials and high‐density polyethylene were prepared and their long‐term water absorption behaviors were studied. Wood flour, rice hulls, newsprint fibers, and kenaf fibers were mixed with the polymer at 25 and 50 wt % fiber contents and 1 and 2% compatibilizer, respectively. Water absorption tests were carried out on injection‐molded specimens at room temperature for five weeks. Results indicated a significant difference among different natural fibers with kenaf fibers and newsprint fibers exhibiting the highest and wood flour and rice hulls the lowest water absorption values, respectively. Very little difference was observed between kenaf fiber and newsprint composites and between rice hulls and wood flour composites regarding their water uptake behavior. The difference between 25 and 50% fiber contents for all composite formulations increased at longer immersion times, especially for the composites with higher water absorption. Kenaf fiber composites containing 50% kenaf fibers exhibited the highest water diffusion coefficient. A strong correlation was found between the water absorption and holocellulose content of the composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3907–3911, 2006  相似文献   

19.
The effect that polymer molecular weight has on the dispersion of relatively polar montmorillonite (MMT) in nonpolar, unmodified high density polyethylene (HDPE) was examined. Polymer layered silicate (PLS) nanocomposites were prepared via melt compounding in a single screw extruder using three unmodified HDPE matrices of differing molecular weight and organically modified MMT (organoclay) in concentrations ranging from 2 to 8 wt%. The weight average molecular weights (M W) of the HDPE matrices used ranged from 87,000 to 460,000 g/mol. X‐ray diffraction (XRD), tensile testing, dynamic mechanical thermal analysis (DMTA), and dynamic rheometry were performed on these nanocomposites. Nanocomposites generated from the high molecular weight (HMW) HDPE matrix exhibited increased intercalation of the MMT as shown by XRD and greater improvements in the Young's modulus when compared with nanocomposites generated from the low (LMW) and middle molecular weight (MMW) matrices. DMTA measurements carried out in torsion showed that the increase in shear modulus of the HMW nanocomposites was not as great as that of the LMW and MMW counterparts as observed from a lower percentage enhancement in the storage modulus (G′) and estimated heat distortion temperature (HDT). This was attributed to the higher degree of mechanical anisotropy in the HMW nanocomposites. POLYM. COMPOS., 28:499–511, 2007. © 2007 Society of Plastics Engineers  相似文献   

20.
Crosslinking is a promising method for stabilizing the electrical properties of polyolefin composites with a positive temperature coefficient of resistivity (PTCR) for application as self-controlled heaters. An interesting phenomenon is that the measured room temperature resistivity of such materials is independent of applied voltage at low DC fields, but crosses over to display an apparent decrease with the accretion of voltage above a critical value. Measured current vs. time of voltage application has been recorded that shows an equilibrium varying with temperature and voltage. Theoretical approaches to these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号