首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A Bacillus sp. TS‐23 α‐amylase produced by recombinant Escherichia coli was adsorbed onto raw starch and the adsorbed enzyme was eluted with maltose or maltodextrin in 50 mM Tris/HCl buffer (pH 8.5). The adsorption‐elution procedure resulted in a yield of 53% α‐amylase activity and sodium dodecyl sulfate‐polyacrylamide gel electrophoresis (SDS/PAGE) analysis showed that the eluted α‐amylase had a molecular mass of approximately 64 kDa. Raw starch could be used repeatedly in the adsorption‐ elution cycle with good reproducibility. Scanning electron microscopy of the isolated corn starch exhibited a smooth appearance of the granules before adsorption and only a small change in appearance after three adsorption‐elution cycles. These results suggest that the raw starch adsorption‐elution technique has a great potential in the isolation of Bacillus sp. TS‐23 α‐amylase from the culture broth of recombinant E. coli.  相似文献   

2.
Arabinoxylans (AXs) from wheat malts potentially affect beer quality and production. β‐ d ‐Xylosidase is a key enzyme that degrades the main chains of AXs to produce xylose. This study performed a partial characterization of β‐ d ‐xylosidase from wheat malts. The optimal temperature was 70 °C and the enzyme exhibited excellent thermostability, that is, residual activities were 92.6% at 60 °C for 1 h. The enzyme was stable over a pH range of 3.0–6.0 and showed optimum activity at pH 3.5 and 4.5. Kinetic parameters Km and Vmax of wheat malt β‐ d ‐xylosidase against p‐nitrophenyl‐xyloside were 1.74 mmol L−1 and 0.76 m m min−1, respectively. The enzyme activity was severely inhibited by Cu2+, moderately inhibited by Mn2+, Mg2+, Al3+, Ca2+, Ba2+ and Na+ and mildly inhibited by Fe3+ and Fe2+. The partial enzymatic characterization achieved in this study can be used as a theoretical basis for purifying β‐ d ‐xylosidase from wheat malts. Copyright © 2015 The Institute of Brewing & Distilling  相似文献   

3.
Maltooligosaccharides producing amylases are required in the food industry, especially in breadmaking. The Bacillus subtilis strain SDP1 amylase hydrolyses starch to produce maltotriose and maltotetraose along with maltose after prolonged reactions of 5 h. Bacillus subtilis strain SDP1 was isolated from the rhizosphere of Acacia cyanophylla Lindley from the Çukurova region of Turkey. The highest enzyme production was achieved with soluble starch as the carbon and yeast extract as the nitrogen source and at pH 7.0 and 37°C. Under optimized culture conditions, 68.49 U/mL activity was obtained. SDP1 α-amylase had molecular weight of 61 kD. The optimum pH of the enzyme was 7.0 and was highly active at pH ranging from 5.0 to 9.0. The optimum temperature of the crude enzyme was 60°C, and it retained 83% and 74% of its initial activity after 1 h and 2 h incubation periods, respectively, at 50°C. While, Mn+2 has a stimulatory effect on the activity, Ca+2, Mg+2, Na+ did not effect the enzyme activity. Fe+3, Ni+2, Cu+2 and Co+2 had an inhibitory effect on SDP1 amylase activity.  相似文献   

4.
The leaves of Ligustrum purpurascens are used in a Chinese traditional tea called small‐leaved kudingcha, which is rich in phenylpropanoid glycosides (PPGs) and has many beneficial properties. Two critical exoacting glycoside hydrolase enzymes (glucosidases) involved in carbohydrate digestion are α‐glucosidase and α‐amylase. We investigated the properties of PPGs from L. purpurascens for inhibiting α‐amylase and α‐glucosidase activity in vitro and found IC50 values of 1.02 and 0.73 mg mL?1, respectively. The patterns of inhibiting both α‐amylase and α‐glucosidase were mixed‐inhibition type. Multispectroscopy and molecular docking studies indicated that the interaction between PPGs and α‐amylase and α‐glucosidase altered the conformation of enzymes, with binding at the site close to the active site of enzymes resulting in changed enzyme activity. Our studies may help in the further health use of small‐leaved kudingcha.  相似文献   

5.
Three phytosterols were isolated from Musa spp. flowers for evaluating their capabilities in inhibiting glucosidase and amylase activities and glycation of protein and sugar. The three phytosterols were identified as β‐sitosterol (PS1), 31‐norcyclolaudenone (PS2) and (24R)‐4α, 14α, 4‐trimethyl‐5α‐cholesta‐8, 25(27)‐dien‐3β‐ol (PS3). IC50 values (the concentration of inhibiting 50% of enzyme activity) of PS1, PS2 and PS3 against α‐glucosidase were 283.67, 11.33 and 43.10 μg mL?1, respectively. For inhibition of α‐amylase, the IC50 values of PS1, PS2 and PS3 were 52.55, 76.25 and 532.02 μg mL?1, respectively. PS1 was an uncompetitive inhibitor against α‐amylase with Km at 5.51 μg mL?1, while PS2 and PS3 exhibited a mixed‐type inhibition with Km at 52.36 and 2.49 μg mL?1, respectively. PS1 and PS2 also significantly inhibited the formation of advanced glycation end products (AGEs) in a BSA–fructose model. The results suggest that banana flower could possess the capability in prevention of the diseases associated with abnormal blood sugar and AGEs levels, such as diabetes.  相似文献   

6.
A medium was developed to obtain the maximum yield of raw starch‐digesting amylase from Aspergillus carbonarius (Bainier) Thom IMI 366159 in submerged culture with raw starch as the sole carbon source. The amylase was purified to apparent homogeneity by sucrose concentration and ion exchange chromatography on S‐ and Q‐Sepharose (fast flow) columns. SDS‐PAGE revealed two migrating protein bands corresponding to relative molecular masses of 31.6 and 32 KDa. The enzyme was optimally active at pH 6.0–7.0 and 40 °C, was uninfluenced across a relatively broad pH range of 3.0–9.0 and retained over 85% activity between 30 and 80 °C after 20 min incubation. The enzyme was strongly activated by Co2+ and only slightly by Fe2+, while Ca2+, Hg2+, EDTA and N‐bromosuccinamide elicited significant repression of the enzyme activity. The enzyme hydrolysed amylopectin (Km 0.194 mg ml −1), glycogen (Km 0.215 mg ml −1), pullulan (Km 0.238 mg ml −1), amylose (Km 0.256 mg ml −1) and raw potato starch (Km 0.260 mg ml −1), forming predominantly maltose and relatively smaller amounts of glucose. © 2000 Society of Chemical Industry  相似文献   

7.
Among several bacteria examined in this study, a hyper acidophil and thermostable Micrococcus sp.NS 211 designated as M.Amy NS 211 was selected for production of amylase using starch agar plates with following incubation at 85°C. Identification by 16SrRNA on selected bacterium disclosed the highest similarity for protean regions of this gene, 27 F and 1492R as Micrococcus sp.NS 211. Although activity of M.Amy NS 211 was established at temperatures between 70 and 110°C and pH ranges 1.2–8.0, the optimum temperature and pH was achieved at 85°C and 3.5 in sodium citrate buffer system respectively. Two‐step chromatography was performed using (CM Bio‐Gel A) and (Bio‐Gel A‐150) columns to purify 84 kDa hyper acidophil and thermostable α‐amylase. SDS‐PAGE analysis showed molecular mass and amylolytic activity as single band. Enhancement of enzyme activity was obtained in presence of 5 mM MnCl2 (298%), CaCl2 (347%), FeCl2 (211%), MgCl2 (253%), ZnCl2 (146%), NiCl (142%), NaCl (141%), Na‐sulfate (153%) while inhibition was observed with (5 mM) EDTA, PMSF (3 mM), urea (8 M), and SDS (1%) at 143, 134, 43, and 119%, respectively. M.Amy NS 211 can be applied in laundry detergents, textile, and modern relevant industrial processes at extreme temperatures and under acidic conditions.  相似文献   

8.
An extracellular α‐l ‐rhamnosidase from Penicillium citrinum MTCC‐3565 has purified to homogeneity from its culture filtrate using ethanol precipitation and cation‐exchange chromatography on carboxymethyl cellulose. The purified enzyme gave a single protein band corresponding to molecular mass of 45.0 kDa in SDS‐PAGE analysis showing the purity of the enzyme preparation. The native PAGE analysis showed the monomeric nature of the purified enzyme. Using p‐nitrophenyl α‐l ‐rhamnopyranoside as substrate, Km and Vmax values of the enzyme were 0.30 mm and 27.0 μm min mg?1, respectively. The kcat value was 20.1 s giving kcat/Km value of 67.0 mm s?1 for the same substrate. The pH and temperature optima of the enzyme were 8.5 and 50 °C, respectively. The activation energy for the thermal denaturation of the enzyme was 29.9 KJ mol?1. The α‐l ‐rhamnosidase was able to hydrolyse naringin, rutin and hesperidin and liberated l ‐rhamnose, indicating that the purified enzyme can be used for the preparation of α‐l ‐rhamnose and pharmaceutically important compounds by derhamnosylation of natural glycosides containing terminal α‐l ‐rhamnose. The α‐l ‐rhamnosidase was active at the level of ethanol concentration present in wine, indicating that it can be used for improving wine aroma.  相似文献   

9.
β‐Mannanase was purified 2619.05‐fold from the Lactobacillus plantarum (M24) bacterium by ammonium sulphate precipitation and ion exchange chromatography (DEAE‐Sephadex). The purified enzyme gave two protein bands at a level of approximately 36.4 and 55.3 kDa in the SDS‐PAGE. The purified mannanase enzyme has shown its maximum activity at 50 °C and pH 8, and it has been also determined that the enzyme was stable at 5–11 pH range and over 50 °C. The Vmax and Km values have been identified as 82 mg mannan mL?1 and 0.178 mm , respectively. The effects of some metal ions such as Fe2+, Ca2+, Co2+, Ni2+, Mn2+, Cu2+ and Zn2+ on the mannanase enzyme have been also investigated, and it has been determined that all metal ions had significant effects on the activation of the mannanase enzyme. In addition, the effectiveness of the purified mannanase enzyme on the clarification of some fruit juices such as orange, apricot, grape and apple has been investigated. During the clarification processes, the enzyme was more effective than crude extracts on the clarification of the peach juice with a ratio of 223.1% at most.  相似文献   

10.
Soybean hull peroxidase (EC 1.11.1.7), an acidic peroxidase isolated from soybean (Glycine max var HH2) hulls was purified to electrophoretic homogeneity by a combination of ammonium sulphate fractionation, DEAE‐Sephadex A‐50 chromatography, concanavalin A‐Sepharose 4B affinity chromatography and Bio‐Gel P‐60 gel filtration. The specific activity of purified peroxidase was about 57‐fold higher than that of crude extract. The yield was about 16.4%. The molecular weight of the enzyme was estimated to be 38 000 by SDS‐polyacrylamide gel electrophoresis. The peroxidase was a glycoprotein containing about 18.7% carbohydrate, approximately one‐quarter of which was shown to be glucosamine residues. It was found to have an isoelectric point of 3.9. The enzyme was most active at pH 4.6 and 45°C, and was stable in the pH range 2.5–11.5. The enzyme could tolerate heating for 10 min at 75°C without being inactivated, and at 85°C, it took 40 min to inactivate the enzyme 50%, confirming that the peroxidase was a novel thermostable enzyme. Fe 2+, Fe3+, Sn2+, CN and N3 inhibited enzyme activity, while Hg2+, Ag+, Pb 2+, Cr3+, EDTA and SDS were not significantly inhibitory. © 1999 Society of Chemical Industry  相似文献   

11.
A novel α‐L‐rhamnosidase was isolated and purified from Aspergillus oryzae NL‐1. The enzyme was purified 13.2‐fold by ultrafiltration, ion exchange and gel filtration chromatography with an overall recovery of 6.4% and specific activity of 224.4 U/mg, and the molecular mass of its subunit was approximately 75 kDa. Its optimal temperature and pH were 65 °C and 4.5, respectively. The enzyme was stable in the pH range 3.5–7.0, and it showed good thermostability at higher temperatures. The KM, kcat and kcat/KM values were 5.2 mm , 1624 s?1 and 312 s?1 mm ?1 using pNPR as substrates, respectively. Moreover, the enzyme exhibited transglycosylating activity, which could synthesise rhamnosyl mannitol through the reactions of transglycosylation with inexpensive rhamnose as the glycosyl donor. Our findings indicate that the enzyme has potential value for glycoside synthesis in the food industry.  相似文献   

12.
The exocellular α-amylase of a strain of Aspergillus niger van Tieghem (elaborating both dextrifying and saccharifying thermophilic amylases) was purified to homogeneity. Purification was achieved by providing cultural conditions for the organism to preferentially synthesize α-amylase and fractionation of the culture filtrate by DEAE-Sephadex chromatography. Its purity was established by gel electrophoresis and confirmed by sedimentation studies. The molecular weight of the enzyme was 56,230. Its Km values on different starches, temperature and pH optima for activity and energy of activation were established. Compared to literature values for other fungal α-amylases, this enzyme exhibited a lower energy of activation, increased tolerance to lower pH and enhanced affinity to starch, highlighting its potential industrial application. While Ag+, Pb2+, Hg+, Al3+ and EDTA inhibited the activity of the enzyme, Ca2+ enhanced its activity, apart from conferring thermal stability and lowered activation energy. The product of its action on starch were maltooligosaccharides, maltose and glucose.  相似文献   

13.
BACKGROUND: The optimisation of nutrient levels for the production of α‐amylase by Aspergillus oryzae As 3951 in solid state fermentation (SSF) with spent brewing grains (SBG), an inexpensive substrate and solid support, was carried out using response surface methodology (RSM) based on Plackett–Burman design (PBD) and Box–Behnken design (BBD). RESULTS: In the first optimisation step a PBD was used to evaluate the influences of related factors. Corn steep liquor, CaCl2 and MgSO4 were found to be the most compatible supplements to the substrate of SBG and influenced α‐amylase activity positively. In the second step the concentrations of these three nutrients were optimised using a BBD. The final concentrations (g/g dry substrate basis) in the medium optimised with RSM were 1.8% corn steep liquor, 0.22% CaCl2 and 0.2% MgSO4 · 7H2O using SBG as the solid substrate. The average α‐amylase activity reached 6186 U g?1 dry substrate under the optimised conditions at 30 °C after 96 h. Under the optimised conditions of SSF an approximately 17.5% increase in enzyme yield was observed. CONCLUSION: SBG was found to be a good substrate for the production of α‐amylase by A. oryzae As 3951 under SSF. Copyright © 2007 Society of Chemical Industry  相似文献   

14.
Rhizopus microsporus, recently isolated from a solid culture of Heng‐Shui Lao‐Bai‐Gan (HSLBG, a famous distilled liquor in Northern China) was found to produce a novel extracellular acid stable and thermostable α‐amylase. This fungal α‐amylase was purified using ammonium precipitation, Sephadex G‐25 desalination and DEAE‐52 cellulose chromatography. Its molecular weight was estimated to be 75 kDa by SDS–PAGE. The optimum pH and temperature of this enzyme was pH 5.0 and 70°C respectively. Thermostability and kinetic analysis through the Arrhenius and Michaelis–Menten equations revealed that this enzyme showed an exceptional activity at low pH and high temperature. A combination of this thermostability and acid stability could be a valuable trait for the efficient hydrolysis of amylose to glucose in large‐scale biotechnology applications. Copyright © 2012 The Institute of Brewing & Distilling  相似文献   

15.
Two amylases of an alkalopsychrotrophic Micrococcus were purified by chromatographies of DEAE-Toyopearl, Butyl-Toyopearl and Shodex WS-2003. Molecular weights and pI values of the purified enzymes, I and II, were 185000 and 125000 by SDS-PAGE and 4.8 and 4.3 by isoelectric focusing, respectively. Enzyme I had not only amylase but also pullulanase activity. In the presence of Ca2+ ions, other properties of both enzymes were very similar: optimum temperature 55–60°C, optimum pH 7.5–8.0 km value for maltopentaose 0.09 mM. Both amylases were completely inactivated after incubation with EDTA at 30°C and thereafter, could be reactivated by an addition of CaCl2. In the absence of Ca2+ ions, amylase I became thermoresistant, while the thermostability of amylase II decreased. Neither amylase activity of enzyme I nor enzyme II was inhibited by pullulan.  相似文献   

16.
Cyclodextrin glucanotransferases (EC 2.4.1.19) (CGTase) are industrially important enzymes for production of cyclodextrin (CD) from starch. γ‐CD yield of CGTase from alkalophilic Bacillus species is usually much lower than β‐CD, while from alkalophilic Bacillus sp. 7‐12. γ‐CD yield is close to β‐CD. A CGTase from alkalophilic Bacillus sp. 7‐12 was purified and characterized. When purified by ammonium sulfate fractionation, DEAE‐cellulose column chromatography and Sepharose CL‐6B column chromatography, the enzyme obtained consisted of a single band that did not dissociate into subunits by SDS polyacrylamide gel electrophoresis. Molecular weight of the purified enzyme was determined to be 69,000 Da by SDS‐PAGE. The enzyme showed a Kmof 1.24 mg/mL and Vmax0.101 µM/min when potato starch was used as substrate. The enzyme was stable below 70C with an optimum activity at 60C, and stable at pH range 6–10 with an optimum pH at 8.5. The enzyme activity was strongly inhibited by Ag+, Cu2+, Mg2+, Al3+, Co2+, Zn2+, Fe2+and slightly inhibited by Sn2+, Mn2+. The ions Ca2+and K+, EDTA and DTT had no influence on the enzyme activity.  相似文献   

17.
A protease from sorghum malt variety KSV8–11 was purified by a combination of dialysis against 4 M sucrose, ion‐exchange chromatography on Q‐Sepharose (Fast flow), gel filtration chromatography on Sephadex G‐100 and hydrophobic interaction chromatography on Phenyl Sepharose CL‐4B. The enzyme was purified 5‐fold to give a 14.1% yield relative to the total activity in the crude extract and a final specific activity of 1348.9 U mg?1 protein. SDS‐PAGE revealed a single migrating protein band corresponding to a relative molecular mass of 16 KDa. Using casein as substrate, the purified protease had optimal activity at 50°C and maximal temperature stability between 30°C and 40°C but retained over 64% of its original activity after incubation at 60°C for 30 min. The pH optimum was 5.0 with maximum stability at pH 6.0 but 60% of the activity remained after 24 h between pH 5.0 and 8.0. The protease was inhibited by Ag+, Ca2+, Co2+, Fe2+, Mg2+, iodoacetic acid (IAA) and p‐chloromercuribenzoate (p‐CMB), stimulated by Cu2+, Sr2+, phenylmethylsulfonyl‐fluoride (PMSF) and 2‐mercaptoethanol (2‐ME) while Mn2+ and ethylenediaminetetraacetic acid (EDTA) had no effect. The purified enzyme had a Km of 18 mg·mL?1 and a Vmax of 11.1 μmol · mL?1 · min?1 with casein as substrate.  相似文献   

18.
Response surface methodology (RSM) was used to study the effect of enzyme to substrate ratio (11.8–23.6 U α‐amylase/g rice starch), hydrolysis temperature (90–100°C) and pH value (6.0–6.6) on the gel strength of rice starches‐based fat substitute using α‐amylase hydrolysis. The optimum conditions obtained from response surface analysis was 16.52 U/g enzyme dosage, 92°C hydrolysis temperature while the influence of pH was found insignificant in the range tested. Under these optimum conditions, the gel strength of this fat substitute was 113 g/cm2, very close to the gel strength of butter of 114 g/cm2, while the solubility of the substitute was 1.33 ± 0.01% and the swelling power 4.85 ± 0.02. There were no observable differences in the granular size distribution between the untreated rice starch and the hydrolyzed rice starch. Rheological properties of this rice starch‐based fat substitute implied that it is easier for the substitute to form three‐dimensional networks under 34°C.  相似文献   

19.
A bacterium, Arthrobacter globiformis S64—1, produced an inulinase in the culture broth. The enzyme was purified 442-fold by DEAE-Toyopearl chromatographies. It showed maximal activity at 40°C and pH 6.5. The enzyme activity was inhibited strongly by Hg2+, Fe3+, Cu2+ and EDTA. The molecular weight of the enzyme was estimated to be 100,000 by SDS-PAGE. The isoelctric point of the enzyme was estimated to be 4.8 by isoelectric focusing on a polyacrylamide gel. The enzyme degraded inulin through an exo-type reaction.  相似文献   

20.
β-Amylase produced by Hendersonula toruloidea was purified to homogeneity by salting out with ammonium sulphate, ion-exchange chromatography on DEAE-cellulose and gel-filtration on Sephadex G-75. The relative molecular mass of the enzyme was estimated to be 60,000 by gel filtration. The enzyme was optimally active at pH 6.0 and 60°C, stable between pH 6 and 8 (24 h) and retained 74% activity at 70°C (30 min). It was strongly activated by Na+ but inhibited by Hg2+, Zn2+ and Cu2+. The enzyme hydrolyzed amylopectin (Km 0.42 mg/ml) forming maltose, maltotetraose and unidentified maltooligosaccharide, and hydrolyzed soluble starch (Km 0.3 mg/ml) and glycogen (Km 0.5 mg/ml) forming maltose and unidentified maltooligosaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号