首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of poly(methyl methacrylate) (PMMA) nanocomposites were synthesized using free radical polymerization in bulk, by addition of 1 vol% of oxide nanoparticles (silica, alumina, and titania), differing in the nature and type. The influence of nanofiller presence on the kinetics of methyl methacrylate (MMA) free radical polymerization was investigated. For this purpose, the kinetic model that includes the contribution from the first‐order reaction and the autoacceleration was applied on data obtained following the isothermal polymerization at 70°C by differential scanning calorimetry (DSC). The effect of the size and the surface nature of nanofillers on the interfacial layer thickness (d), as well as the influence of d on the glass transition temperature (Tg) of PMMA hybrid materials was studied. It was found that hydrophilic particles accelerated the initiator decomposition and affected the monomer polymerization on the surface, which caused the formation of thicker interfacial layer compared to the one around hydrophobic fillers. The addition of smaller nanoparticles size decreased the glass transition temperature of pure poly(methyl metacrylate). The linear increase of PMMA Tg value with increasing the polymeric interfacial layer was determined. The Tg values of pure PMMA and PMMA nanocomposite with d of 1.4 nm were estimated to be the same. POLYM. COMPOS. 34:1342–1348, 2013. © 2013 Society of Plastics Engineers  相似文献   

2.
In this work, an attempt is made to verify the existence of a hairy layer at the surface of polymer latex particles, and determine its thickness under different conditions. Two systems have been studied. In one system, sodium dodecyl sulphate (SDS) and sodium dodecanoate (laurate-SL) were used, separately, as emulsifiers in ab initio (unseeded) emulsion polymerization of styrene carried out at different ionic strengths. At low levels of electrolyte (NaCl in the range 0·00– 0·10M), the hydrodynamic radius (dH) was found to decrease gradually, reaching a minimum value at 0·10M, about 7–9nm smaller than the original value in the absence of electrolyte. At electrolyte levels higher than 0·10M, dH increased monotonically. In the first observation, the results are interpreted in terms of a hairy layer model, which suggests that the thickness of this layer is reduced by the presence of an electrolyte because of charge shielding, while the increased dH at high ionic strength is interpreted in terms of coalescence between latex particles. The extent of the effect depends mainly on the concentration of emulsifier. In the second system, the effect on a seeded emulsion polymerization of styrene was investigated. In this system, a seed latex containing about 10% solids was prepared with SDS as emulsifier. The monomer was then further polymerized at different ionic strengths with no more added emulsifier. The effect on dH was very similar to that of the first system. However, in a previous investigation on this system (Polym. Int., 40 (1996) 307) the rate of seeded polymerization was not affected in the electrolyte range 0·0–0·1M, while it was found to increase with increasing electrolyte level in the range 0·10–0·20M. Post-addition of electrolyte (0·0–0·1M) to the seed latex results in a 4–6nm size contraction due to an increase in the hydrophobicity of the surface, leading to a backward extension away from the aqueous phase. © 1998 Society of Chemical Industry  相似文献   

3.
The effects of different silica loadings and elastomeric content on interfacial properties, morphology and mechanical properties of polypropylene/silica 96/4 composites modified with 5, 10, 15, and 20 vol % of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) SEBS added to total composite volume were investigated. Four silica fillers differing in size (nano‐ vs. micro‐) and in surface properties (untreated vs. treated) were chosen as fillers. Elastomer SEBS was added as impact modifier and compatibilizer at the same time. The morphology of ternary polymer composites revealed by light and scanning electron microscopies was compared with morphology predicted models based on interfacial properties. The results indicated that general morphology of composite systems was determined primarily by interfacial properties, whereas the spherulitic morphology of polypropylene matrix was a result of two competitive effects: nucleation effect of filler and solidification effect of elastomer. Tensile and impact strength properties were mainly influenced by combined competetive effects of stiff filler and tough SEBS elastomer. Spherulitic morphology of polypropylene matrix might affect some mechanical properties additionally. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41486.  相似文献   

4.
Acrylonitrile–EPDM–styrene (AES) graft copolymers were synthesized by solution graft polymerization of styrene (St) and acrylonitrile (AN) onto EPDM in an n‐hexane/benzene solvent with benzoyl peroxide (BPO) as an initiator. The structure changes were studied by an FTIR spectrophotometer. The grafting parameters were calculated gravimetrically. The influence of the polymerization conditions, such as the reaction time, concentration of the initiator, EPDM content, and weight ratio of St/AN, on the structure of the products was investigated. It was found that a proper initiator concentration and EPDM content will give a high grafting ratio of the AES resin. The thermal property of the copolymer was studied using programmed thermogravimetric analysis (TGA). The results showed that the copolymer has a better heat‐resistant property than that of ABS, especially for the initial decomposition temperature (Tin) and the maximum weight loss rate temperature (Tmax). Also, the mechanism of the graft reaction was discussed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 428–432, 2002  相似文献   

5.
60Co γ rays induced styrene emulsion polymerizations were carried out with sodium undec-10-enoate (UDNa) as emulsifier at room temperature and the different kinetics was discussed. The influence of absorbed dose rate, monomer concentration and emulsifier concentration on kinetics and latex particles was studied. The polymerization kinetics relation was found as R P D 0.37 · M 0.75 · E 0.70 (R P , maximum polymerization rate; D, absorbed dose rate; M, monomer concentration; E, emulsifier concentration). The particles’ diameter increases and particle size distribution (PSD) becomes narrower with the decrease of absorbed dose rate and increase of monomer content. The effect of UDNa content on particles’ diameter and particle size distribution is the same as that of emulsifier in conventional emulsion system. This type of emulsion polymerization can easily form monodisperse particles.  相似文献   

6.
Amorphous polyamide (aPA)/maleated styrene/ethylene‐butylene/styrene triblock copolymer (mSEBS) blends with a mSEBS content up to 25% were obtained in the melt state with the aim of toughening the notch sensitive pseudoductile matrix, and of studying the parameters that influence the morphology that leads to the brittle/tough transition. The increase in the Tg of the rubbery phase, which depended on the maleinized copolymer content, indicated the presence of reacted copolymers. These copolymers should decrease the interfacial tension, thus allowing the presence of a fine dispersed particle size. The impressive (27‐fold) toughness increase observed, which is among the largest observed in toughened blends, took place at 15% mSEBS content. The critical interparticle distance (τc) of the blends was smaller than that of polyamide 6 (PA6)/mSEBS blends tested at the same conditions. Having ruled out the possible influence of other parameters, the lower τc of the aPA/mSEBS blends of this study is attributed to their higher interfacial adhesion that was inferred by the calculation of the solubility parameters and by the measured interfacial toughness. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

7.
Poly (styrene‐n‐butyl acrylate‐methyl methacrylate) (PSBM)/silica nanocomposite was prepared by emulsion polymerization in the presence of oleic acid surface modified nanosilica. The structure, morphology, size, and size distribution were characterized by Fourier transform infrared (FTIR), transmission electron microscopy (TEM), and dynamics laser scattering. The chemical bond was formed between PSBM and nanosilica revealed by FTIR and TEM studies. The composite particles with an averaged diameter ranging from 30 to 80 nm have the core‐shell structure. The effect of silica content on the glass transition temperature Tg, pyrolyze temperature, and rheological behavior of PSBM composites was systematically investigated. The results indicated that the addition of nanosilica could effectively inhibit chain movement, and improved the pyrolyze temperature of PSBM. The steady viscosity and dynamic modulus were strongly dependent on the content and distribution of nanosilica in PSBM nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
In this paper, the polystyrene–silica hybrid particles were prepared by mechanochemical method. The surface activity index of the hybrid particle was prepared by mechanochemical method, and the contact angle is 128.8°, which indicates that it has the very good hydrophobicity. We can observe that the surface of the modified SiO2 coated with a layer of polystyrene under the transmission electron microscopy. In infrared, we found that there are Si–C bonds on the surface of the modified SiO2, which indicates that styrene monomer is successfully grafted to the surface of silica in the form of polystyrene whose maximum viscosity average degree of polymerization is 158 under mechanical force. The grafting rate was 4.28% measured by thermogravimetric analysis.  相似文献   

9.
The influence of montmorillonite (MMT) on the syndiotactic polymerization behavior of styrene was studied. To avoid the hydrophilic surface of the MMT coming into contact with the catalyst, which could poison it, SAN was introduced between the MMT and Cp*Ti (OCH3)3. MMT was introduced into the catalytic system as a supporter for the Ti catalyst (supported catalytic system) or just dispersed in the polymerization solvent directly (in situ polymerization system). The polymerization results showed that surface modification of MMT dramatically affected the catalytic activity as well as the syndiotacticity of the polymers. This is mainly explained by the insulator SAN preventing the formation of the inactive/little active species Si? O? Ti and other atactic active species resulting from the reaction of the ? OH on the MMT layer surface with Cp*Ti(OCH3)3. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

10.
Radiation-induced polymerization of water-saturated styrene (water content 3.5 × 10-2 mole/liter) was carried out in a wide range of dose rate between 1.2 × 103 and 1.8 × 107 rad/sec, and compared with the polymerization of the moderately dried styrene (water content 3.2 × 10-3 mole/liter). Molecular weight distribution curves of the polymerization products showed that they were generally consisted of four parts, namely, oligomers, radical, cationic, and super polymers. Contributions of the four constitutents to the polymerization and the number average degrees of polymerization (DP) of the four kinds of polymers were calculated by the graphical analysis of the curves. The rate of radical polymerization and DP of radical polymers are independent of the water content; the dose rate dependences of the polymerization rate and DP agree with the well known square root and inverse square root laws, respectively, of the radical polymerization of styrene. The rate of ionic polymerization is directly proportional to the dose rate, but it decreases, at a given dose rate, inversely proportional to the water content of styrene. DP of ionic polymer is independent of the dose rate but decreases with increasing water content. The super polymer of DP about 104 is not formed in the case of the moderately dried styrene. G values for the initiating radical and ion formation are calculated to be, independently of the dose rate and water content, 0.66 and 0.027, respectively. It was suggested that oligomer was formed in the early stage by the interaction of cation with anion and only those cations which had survived underwent polymerization.  相似文献   

11.
In the batch emulsion copolymerization of styrene and α-tert-butoxy-ω-vinylbenzyl-polyglycidol macromonomer, carried out at macromonomer concentrations exceeding the critical micelle concentration (cmc), particles are formed by a two-step coagulative nucleation mechanism. This mechanism leaves its mark on morphology of particle interface, rate of polymerization and on molecular weight distribution of the obtained polymer. AFM studies revealed that the interface of particles is composed of objects with dimensions close to dimensions of the primary particles. Compartmentalization of styrene in the macromonomer micelles leads to the higher initial rate of styrene conversion than in the similar macromonomer free homopolymerization of styrene. The initial polymerization in the monomer-swollen macromonomer micelles, similar to the microemulsion polymerization, is responsible for the formation of the highest molecular weight component. In the mature particles there are two different polymerization loci: the interfacial layer and the core. This leads to bimodal molecular weight distribution of the formed polymer.  相似文献   

12.
Poly(β‐pinene) was brominated by N‐bromosuccinimide on the allylic carbons. Then the brominated product was activated by AlEt2Cl to initiate the polymerization of styrene to give a β‐pinene/styrene graft copolymer. AlEt2Cl was selected because it alone could not initiate the polymerization of styrene. The obtained graft copolymer was characterized by GPC, 1H‐NMR, and DSC measurements, respectively. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 599–603, 2000  相似文献   

13.
The Fourier transformed infrared (FTIR) spectroscopy on the rubber‐filler gel has been used as a tool for the quantitative characterization of the phase selective silica localization in styrene butadiene rubber (SBR)/natural rubber (NR) blends. The so‐called rubber‐layer L was introduced to describe the selective wetting behavior of the rubber phases to the filler. SBR/NR blends filled with silica were the focus of the experimental investigation. NR shows a higher wetting rate than SBR. Silane addition does not affect the wetting of NR but slowdowns the wetting of SBR. With increasing chamber temperature the value of the rubber‐layer L of all mixtures increases owing to the different thermal activated rubber‐filler bonding processes. Using the wetting concept the kinetics of silica localization in the phases of heterogeneous rubber blends was characterized. Because of the higher wetting rate of the NR component, in the first stage of mixing of NR/SBR blends more silica is found in the NR phase than in the SBR phase. In the next stage, silica is transferred from the NR phase to the SBR phase until the loosely bonded components of NR rubber‐layer are fully replaced by SBR molecules. POLYM. COMPOS., 31:1701–1711, 2010. © 2010 Society of Plastics Engineers.  相似文献   

14.
Atomic force microscopy was used to study the characteristics of polymer films formed via admicellar polymerization (the polymerization of monomers solubilized in adsorbed surfactant aggregates). The investigated system included cetyltrimethylammonium bromide (C16TAB) as a cationic surfactant, styrene, 2,2′‐azobisisobutyrilnitrile as an initiator, and polished silica disk substrates. Our goal was to examine changes in the properties and morphology of the formed polymer films due to changes in the surfactant and monomer feed levels. Normal tapping and phase‐contrast modes in air were used to image the nanoscopic and microscopic morphologies of the polystyrene‐modified silica. The root‐mean‐square roughness of the surface before and after modification was statistically analyzed and compared. The images were captured with loading‐force set‐point ratios of 0.2–0.9, and this allowed us to examine the stability of the polystyrene films. In the first series, for which the feed ratio of C16TAB to styrene was kept constant and the total feed concentration was varied, a uniform layer of a polystyrene film was observed along with some nanometer‐size aggregates at high feed concentrations of both C16TAB and styrene. These droplets eventually agglomerated with the film beneath and formed larger macrodroplets in a ring arrangement. At lower concentrations, droplets and holes were observed that eventually agglomerated to form a bicontinuous thin film. In the second experimental series, the concentration of C16TAB was kept constant, and the feed ratio of C16TAB to styrene was varied. A smooth thin film was observed at high concentrations of styrene. This film could be deformed and/or removed to expose the silica surface beneath. At lower styrene loadings, the polystyrene film became unstable and formed dropletlike aggregates, possibly because of either the uneven adsolubilization of the styrene monomer within the admicelle or the dewetting effect during washing and drying. The structure of the polystyrene film formed on a smooth silica disk was very dependent on the amount of the surfactant fed to the system; this contrasted with the results on precipitated silica. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 36–46, 2003  相似文献   

15.
BACKGROUND: The effect of acrylic acid neutralization on the degradation of alkoxyamine initiators for nitroxide‐mediated polymerization (NMP) was studied using styrene/acrylic acid and styrene/sodium acrylate random copolymers (20 mol% initial acrylate feed concentration) as macro‐initiators. The random copolymers were re‐initiated with fresh styrene in 1,4‐dioxane at 110 °C at SG1 mediator/BlocBuilder® unimolecular initiator ratios of 5 and 10 mol%. RESULTS: The value of kpK (kp = propagation rate constant, K = equilibrium constant) was not significantly different for styrene/acrylic acid and styrene/sodium acrylate compositions at 110 °C (kpK = 2.4 × 10?6–4.6 × 10?6 s?1) and agreed closely with that for styrene homopolymerization at the same conditions (kpK = 2.7 × 10?6–3.0 × 10?6 s?1). All random copolymers had monomodal, narrow molecular weight distributions (polydispersity index M?w/M?n = 1.10–1.22) with similar number‐average molecular weights M?n = 19.3–22.1 kg mol?1. Re‐initiation of styrene/acrylic acid random copolymers with styrene resulted in block copolymers with broader molecular weight distributions (M?w/M?n = 1.37–2.04) compared to chains re‐initiated by styrene/sodium acrylate random copolymers (M?w/M?n = 1.33). CONCLUSIONS: Acrylic acid degradation of the alkoxyamines was prevented by neutralization of acrylic acid and allowed more SG1‐terminated chains to re‐initiate the polymerization of a second styrenic block by NMP. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
A series of polymethylene‐bridged dinuclear constrained geometry catalysts (CGC) [Me2Si(Ind)(NtBu) TiCl2]2[(CH2)n] ( 1 , n = 6; 2 , n = 9; 3 , n = 12) were synthesized to study the copolymerization of ethylene and styrene. The experiments display that the polymerization activity of the dinuclear catalysts increased in the order of 1 < 2 < 3 , which indicated that the dinuclear CGC with the longest methylene units as a bridge showed the greatest activity. According to the activity correlation with the monomer ratio, all the catalysts exhibited maximum polymerization activity at the monomer ratio of ([styrene]/[ethylene]) of 2. The dinuclear CGC 2 and 3 represented excellent characteristics of styrene reactivity while catalyst 1 represented considerably low styrene reactivity. The relation between the molecular weights of the polymers and the catalysts used in the polymerization is not straightforward. The steric interference in catalyst 1 , containing just six methylene bridges, can be applied to explain not only the strikingly decreased activity but also the very low styrene content in the copolymer. In contrast, the electronic effect seems to be more pronounced in manipulating the polymerization properties of catalysts 2 and 3 having nine and 12 methylene bridges, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2469–2474, 2003  相似文献   

17.
The reinforcement of a natural rubber compound by various surface-modified precipitated silicas was compared. Compound physical properties were determined for two silicas differing in surface area and were used as controls to evaluate these silicas after surface modification by using either a bifunctional organosilane coupling agent (γ-mercaptopropyl–trimethoxysilane) or a new surface modification process. This new process is based on the in situ polymerization of organic monomers solubilized inside surfactant bilayers that are adsorbed onto the silica surface to afford silicas modified with styrene–butadiene and styrene–isoprene copolymers. Both surface modification processes afford materials that dramatically increase the compound cure rate, thereby significantly reducing T90 cure times, while also improving tensile properties, tear strength, abrasion resistance, and compression set of the cured compound. The silane-modified silica gives a higher flex-cracking resistance than do the silicas modified by the in situ polymerization of organic monomers, whereas these latter silicas significantly increase rebound resilience and offer greater overall improvements in rubber compound performance. The rubber compound physical properties obtained using the modified, higher surface area Hi-Sil® 255 silica are generally improved relative to those obtained using the modified Hi-Sil® 233 silica. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Summary The polymerization of styrene with catalysts based on Ni(acac)2 supported on SiO2 and Al2O3 was investigated. Using catalysts based on MAO supported on silica, a highly isotactic polystyrene was obtained. Nevertheless, the Al2O3-supported catalyst can promote isospecific polymerization activated by common. alkyl aluminum compounds even by any prior support treatment with MAO. Received: 3 March 1998/Revised version: 14 April 1998/Accepted: 14 April 1998  相似文献   

19.
Core–shell poly(acrylic acid)/polystyrene/SiO2 (PAA/PS/SiO2) hybrid microspheres were prepared by dispersion polymerization with three stages in ethanol and ethyl acetate mixture medium. Using vinyltriethoxysilane (VTEOS) as silane agent, functional silica particles structured vinyl groups on surfaces were prepared by hydrolysis and polycondensation of tetraethoxysilane and VTEOS in core stage. Then, the silica particles were used as seeds to copolymerize with styrene and acrylic acid sequentially in shell stage I and stage II to form PAA/PS/SiO2 hybrid microspheres. Transmission electron microscope results show that most PAA/PS/SiO2 hybrid microspheres are about 40 nm in diameter, and the silica cores are about 15 nm in diameter, which covered with a layer of PS about 7.5‐nm thick and a layer of PAA about 5‐nm thick. This core–shell structure is also conformed by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and differential scanning calorimetry. FTIR results show that silica core, PS shell, and PAA outermost shell are bonded by covalents. In the core–shell PAA/PS/SiO2 hybrid microsphere, the silica core is rigidity, and the PAA outermost shell is polarity, while the PS layer may work as lubricant owning to its superior processing rheological property in polymer blending. These core–shell PAA/PS/SiO2 hybrid microspheres have potential as new materials for polar polymer modification. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1729–1733, 2006  相似文献   

20.
Graft polymerization of acrylic acid/styrene mixtures on poly(ethylene terephthalate) fibers using H2O2 as initiator was investigated under different conditions including acrylic acid/styrene ratio, monomer mixtures concentration, initiator concentration, polymerization temperature, pH of polymerization medium, addition of metallic salts, and use of solvent/water mixture instead of aqueous medium. It was found that the rate and extent of grafting for acrylic acid/styrene mixtures were much higher than those of single monomers, indicating a synergestic effect. Maximum percent grafting occurred when acrylic acid/styrene mixture at a ratio of 30:70 was used. Increasing the monomer mixture concentration from 2% to 40% was accompanied by a significant enhancement in percent grafting. The latter increased also significantly as the H2O2 concentration increased from 10 to 150 meq/L; a further increase in H2O2 concentration decreased grafting. No grafting took place at 65°C even after 4 h. Raising the polymerization temperature to 75°C expedited grafting; the magnitude of the latter increased by increasing the temperature up to 95°C. Addition of copper sulphate and ferrous ammonium sulphate to the polymerization system offset grafting, the opposite holds true for lithium chloride provided that its concentration does not exceed 15 mmole/L. Methyl alchol/water mixture (20:80) constituted the optimal medium for polymerization. Grafting of acrylic acid/styrene mixtures to poly(ethylene terephtalate) fibers resulted in considerable improvement in moisture regain of the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号