首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dibutylamine‐terminated ε‐caprolactone oligomers (CLOs: CLOL, CLOM, and CLOH) with number–averaged molecular weight (Mn), 500, 1300, and 2200, respectively, were synthesized by the ring‐opening polymerization of ε‐caprolactone initiated by 2‐(dibutylamino)ethanol in the presence of tin(II) 2‐ethylhexanoate. Nanocomposites based on poly(ε‐caploractone) (PCL) and the caprolactone oligomer‐treated montmorillonites (CLO‐Ms: CLOL‐M, CLOM‐M, and CLOH‐M) were prepared by melt intercalation method. The XRD and TEM analyses of the PCL composites revealed that the extent of exfoliation of the clay platelets increased with increasing molecular weight of the used CLOs. Tensile strength and modulus of the PCL/CLO‐M composites increased with increasing molecular weight of the CLO and increasing inorganic content. The tensile modulus of the PCL/CLOH‐M nanocomposite with inorganic content 5.0 wt % was three times higher than that of control PCL. Among the PCL/CLO‐M composites, the PCL/CLOM‐M composite had the highest crystallization temperature and melting temperature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
Poly(N‐vinylcarbazole) (PVK) composites containing different concentrations of multiwalled carbon nanotube (MWCNT) were synthesized through the oxidative polymerization of N‐vinylcarbazole with ferric chloride. The synthesized composites were characterized using Fourier transform infrared spectroscopy, ultraviolet‐visible spectra, and thermogravimetric analysis. A honeycomb‐patterned film was fabricated by casting the PVK–MWCNT composite solution under humid conditions. The morphology of the honeycomb‐patterned films in the PVK–MWCNT polymer composites and the dependence of its pore diameter and pore height on MWCNT concentration were analyzed using scanning electron microscopy. The honeycomb‐patterned films were treated at 150, 250, 400, and 490°C to study the arrangement of MWCNTs in the patterned films and to measure the DC conductivity depending on the calcination temperature. DC conductivity of the patterned films was increased by increasing the concentration of MWCNT in the composites and in the increased pretreatment temperature. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

3.
When a homogeneous hot liquid of poly(ε‐caprolactone) (PCL) with (R)‐12‐hydroxystearic acid (HSA) or N‐carbobenzyloxy‐L ‐isoleucylaminooctadecane (CIA) was gradually cooled to room temperature, the mixture became gelatinous material and then solidified to give a PCL/HSA or PCL/CIA composite. The rheological measurements of the mixtures of PCL with HSA and CIA revealed that the organogels are formed at around 70–50°C and 100–73°C during the cooling process, respectively. Furthermore, the formation of supramolecular fibrillar networks was confirmed by the microscopic and differential scanning calorimetric analyses. The tensile moduli of both the composites were improved by the addition of CIA and HSA. Both the composites showed so high biodegradability as PCL. The fibrillar networks of the composites were also regenerated during the repeated cooling process from the isotropic liquid. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
In this work, novel antibacterial composites were prepared by using poly(ε‐caprolactone) (PCL) as the main matrix material, and gentamicin‐loaded microspheres composed of β‐tricalcium phosphate (β‐TCP) and gelatin. The purpose is to use this biodegradable material as a support for bone tissue. This composite system is expected to enhance bone regeneration by the presence of β‐TCP and prevent a possible infection that might occur around the defected bone region by the release of gentamicin. The effects of the ratio of the β‐TCP/gelatin microspheres on the morphological, mechanical, and degradation properties of composite films as well as in vitro antibiotic release and antibacterial activities against Escherichia coli and Staphylococcus aureus were investigated. The results showed that the composites of PCL and β‐TCP/gelatin microspheres had antibacterial activities for both bacteria. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
A series of poly(?‐caprolactone) (PCL)/graphite oxide (GO) composites were synthesized through the ring‐opening polymerization of ?‐caprolactone with GO as an initiator. The crystallization behavior of the PCL–GO composites and the effects of the PCL–GO composites as nucleation agents on the crystallization behavior of PCL were also studied. The introduction of GO as PCL–GO composites shortened the crystallization half‐time for both the isothermal crystallization and nonisothermal crystallization of PCL, and this clearly indicated that GO in the PCL–GO composites had a great nucleating effect on the crystallization of pure PCL. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
The in‐vitro hydrolytic behavior of diblock copolymer films consisting of poly(ε‐caprolactone) (PCL) and poly(ethylene glycol) (PEG) was studied at pH 7.4 and pH 9.5 at 37°C. The degradation of these films was characterized at various time intervals by mass loss measurements, GPC, 1H‐NMR, DSC, FTIR, XRD, and SEM. A faster rate of degradation took place at pH 9.5 than at pH 7.4. Analysis of the molecular weight profile during the course of degradation revealed that random chain scission of the ester bonds in PCL predominates at the initial induction phase of polymer degradation. There was also an insignificant mass loss of the films observed. Mass spectroscopy was used to determine the nature of the water soluble products of degradation. At pH 7.4, a variety of oligomers with different numbers of repeating units were present whereas the harsher degradation conditions at pH 9.5 resulted in the formation of dimers. From the results, it can be proposed that a more complete understanding of the degradation behavior of the PCL‐b‐PEG copolymer can be monitored using a combination of physiological and accelerated hydrolytic degradation conditions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
In this work, stereocomplex‐poly(l ‐ and d ‐lactide) (sc‐PLA) was incorporated into poly(ε‐caprolactone) (PCL) to fabricate a novel biodegradable polymer composite. PCL/sc‐PLA composites were prepared by solution casting at sc‐PLA loadings of 5–30 wt %. Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) demonstrated the formation of the stereocomplex in the blends. DSC and WAXD curves also indicated that the addition of sc‐PLA did not alter the crystal structure of PCL. Rheology and mechanical properties of neat PCL and the PCL/sc‐PLA composites were investigated in detail. Rheological measurements indicated that the composites exhibited evident solid‐like response in the low frequency region as the sc‐PLA loadings reached up to 20 wt %. Moreover, the long‐range motion of PCL chains was highly restrained. Dynamic mechanical analysis showed that the storage modulus (E′) of PCL in the composites was improved and the glass transition temperature values were hardly changed after the addition of sc‐PLA. Tensile tests showed that the Young's modulus, and yield strength of the composites were enhanced by the addition of sc‐PLA while the tensile strength and elongation at break were reduced. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40208.  相似文献   

8.
Blended films of poly(L ‐lactide) [ie poly(L ‐lactic acid)] (PLLA) and poly(?‐caprolactone) (PCL) without or mixed with 10 wt% poly(L ‐lactide‐co‐?‐caprolactone) (PLLA‐CL) were prepared by solution‐casting. The effects of PLLA‐CL on the morphology, phase structure, crystallization, and mechanical properties of films have been investigated using polarization optical microscopy, scanning electron microscopy, differential scanning calorimetry and tensile testing. Addition of PLLA‐CL decreased number densities of spherulites in PLLA and PCL films, and improved the observability of spherulites and the smoothness of cross‐section of the PLLA/PCL blend film. The melting temperatures (Tm) of PLLA and PCL in the films remained unchanged upon addition of PLLA‐CL, while the crystallinities of PLLA and PCL increased at PLLA contents [XPLLA = weight of PLLA/(weight of PLLA and PCL)] of 0.4–0.7 and at most of the XPLLA values, respectively. The addition of PLLA‐CL improved the tensile strength and the Young modulus of the films at XPLLA of 0.5–0.8 and of 0–0.1 and 0.5–0.8, respectively, and the elongation at break of the films at all the XPLLA values. These findings strongly suggest that PLLA‐CL was miscible with PLLA and PCL, and that the dissolved PLLA‐CL in PLLA‐rich and PCL‐rich phases increased the compatibility between these two phases. © 2003 Society of Chemical Industry  相似文献   

9.
Poly(N‐isopropyl acrylamide) (PNIPAAm)‐graft‐poly(ethylene oxide) (PEO) hydrogels crosslinked by poly(?‐caprolactone) diacrylate were prepared, and their microstructures were investigated. The swelling/deswelling kinetics and compression strength were measured. The relationship between the structure and properties of hydrogel are discussed. It was found that the PEO comb‐type grafted structure reduced the thermosensitivity and increased the compression strength. The addition of poly(?‐caprolactone) (PCL) accelerated the deswelling rate of the hydrogels. Meanwhile, the entanglement of PCL chains restrained the further swelling of the network of gels. The PCL crosslinking agent and PEO comb‐type grafted structure made the behavior of the hydrogels deviate from the rubber elasticity equations. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
The effect of graphite oxide (GO) as the enforcing filler on the properties of poly(?‐caprolactone) (PCL) was investigated in this study. Through the introduction of GO, the Young's modulus of PCL was increased from 340 to 1000 MPa, and the tensile strength of PCL was increased from 15 to 26 MPa. Furthermore, the interlayer distance of GO (0.6 nm) was found to expand to 1.1 nm in the PCL/GO composite, which indicated the intercalation of the PCL chain into the GO layers. Because of this intercalation structure of the PCL/GO composite, GO showed a higher reinforcing effect than graphite on the mechanical properties of PCL. The intercalation should have enabled much effective load transfer in the PCL/GO composites. Moreover, GO showed a nucleating effect toward the crystallization of PCL, as the nonisothermal crystallization peak temperature shifted from 25°C for pure PCL to about 34°C for the PCL/GO composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Cellulose triacetate (CTA) was doped with poly(N‐vinylcarbazole) during the oxidative polymerization of N‐vinylcarbazole using ferric chloride as an initiator to form polymer blends. The blends were characterized by Fourier transform infrared and UV‐vis spectroscopy. The surface morphology was further studied using both scanning electron microscopy and transmission electron microscopy. Langmuir‐Schaefer films of the polymer blends were fabricated. The DC conductivity of the polymer films at room temperature was found to increase with an increase in CTA content up to a value of 0.001 S cm−1. The temperature‐dependent DC conductivity of the polymer films studied in the range of 300–500 K shows an increase in conductivity with an increase in temperature indicating a semiconducting behavior with a negative temperature coefficient of resistivity. The apparent activation energy also showed a pronounced effect with an increase in the temperature as well as an increase in the content of CTA. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

12.
Self‐reinforced poly(?‐caprolactone) (PCL) composites were prepared by dispersing a homologous nucleating agent within the PCL matrix through melt mixing. Coalesced PCL, featuring more orderly chain arrangements, acted as the nucleating agent leading to improvement of crystallization for the melt PCL matrix. Non‐isothermal melt crystallization behavior, isothermal melt crystallization kinetics, spherulitic morphology and the crystal structure of neat PCL and the PCL self‐reinforced composites were studied in detail. The results indicated that both non‐isothermal and isothermal melt crystallization of PCL composites were enhanced significantly by the homologous nucleating agent, while the crystallization mechanism and crystal structures remained unchanged. The results of tensile mechanical tests showed that the Young's modulus of the composites was improved by up to 77% with the incorporation of 20 wt% nucleating agent. Biocompatibility tests demonstrated that the cells could adhere to and proliferate well on the surface of the self‐reinforced PCL composites. © 2017 Society of Chemical Industry  相似文献   

13.
The poly(ε‐caprolactone) (PCL)/α‐cyclodextrin (α‐CD) inclusion complex (PCLIC) was successfully prepared, and its effect on the thermal behavior and mechanical properties of PCL was thoroughly studied. It is shown that the addition of PCLIC greatly increased the crystallization rate and thermal stability of the PCL. The Young's modulus and yield strength of PCL/PCLIC composite are about 2 and 1.3 times of the pure PCL, and the elongation at break of the PCL/PCLIC composites kept above 350%, when the PCLIC composition is 15 wt %. It is shown that PCLIC is a good enforcing biofiller for the PCL. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Polycaprolactone/boron nitride (PCL/BN) composites were prepared by microwave‐assisted ring‐opening polymerization of ε‐caprolactone (ε‐CL). In order to improve the dispersibility and interfacial interaction between BN fillers and PCL matrix, hydroxyl functional BN (mBN) was first prepared to be used as a macroinitiator for ε‐CL. Then BN grafted PCL (BN‐g‐PCL) copolymers were obtained via the in situ method, which acted as in situ compatibilizers in the PCL/BN composites. Various techniques were applied to characterize the mBN and PCL/BN composites. The Fourier transform infrared spectroscopy results confirm the structure of the BN‐g‐PCL copolymer. Field emission SEM graphs exhibit that, for the PCL/mBN composites, the mBN presents a homogeneous dispersion in the matrix and interfacial adhesion between the PCL and mBN is improved. These are beneficial for enhancing the thermal conductivity of the PCL/mBN composites. Notably, the PCL/mBN composite with 5 wt% mBN loading achieves the highest thermal conductivity of 0.55 W m?1 K?1, which is 2.75 times higher than that of pure PCL, 0.20 W m?1 K?1. This indicates that the excellent dispersion and interfacial adhesion could lead to the construction of continuous thermal conductive paths at a low BN loading and reduce the heat loss caused by phonon scattering in the interface. Furthermore, mBN could help to improve the mechanical properties of the composite. On adding 5 wt% mBN, the tensile strength and tensile modulus of the composite are 1.58 and 2.05 times higher, respectively, than those of PCL. © 2020 Society of Chemical Industry  相似文献   

15.
Poly(L ‐lactide), that is, poly(L ‐lactic acid) (PLLA), poly(ε‐caprolactone) (PCL), and their blend (50/50) films containing different amounts of poly(L ‐lactide‐co‐ε‐caprolactone) (PLLA‐CL), were prepared by solution casting. The effects of added PLLA‐CL on the enzymatic hydrolysis of the films were investigated in the presence of proteinase K and Rhizopus arrhizus lipase by use of gravimetry. The addition of PLLA‐CL decreased the proteinase K–catalyzed hydrolyzabilities of the PLLA and PLLA/PCL (50/50) films as well as the Rhizopus arrhizus lipase‐catalyzed hydrolyzability of the PCL and PLLA/PCL (50/50) films. The decreased enzymatic hydrolyzabilities of the PLLA and PCL films upon addition of PLLA‐CL are attributable to the fact that the PLLA‐CL is miscible with PLLA and PCL and the dissolved PLLA‐CL must disturb the adsorption and/or scission processes of the enzymes. In addition to this effect, the decreased enzymatic hydrolyzabilities of the PLLA/PCL (50/50) films upon addition of PLLA‐CL can be explained by the enhanced compatibility between the PLLA‐rich and PCL‐rich phases arising from the dissolved PLLA‐CL. These effects result in decreased hydrolyzable interfacial area for PLLA/PCL films. The decrement in proteinase K–catalyzed hydrolyzability of the PLLA film upon addition of PLLA‐CL, which is miscible with PLLA, was in marked contrast with the enhanced proteinase K–catalyzed hydrolyzability of the PLLA film upon addition of PCL, which is immiscible with PLLA. This confirms that the miscibility of the second polymer is crucial to determine the proteinase K–catalyzed hydrolyzabilities of the PLLA‐based blend films. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 412–419, 2003  相似文献   

16.
Naturally available halloysite nanotubes (HNTs) with hollow nanotubular structures were used as reinforcement in poly(ε‐caprolactone) (PCL). The PCL/HNT nanocomposites were prepared by melt mixing the polymer with as‐received HNTs up to 10 wt % in an internal batch mixer. Transmission electron microscopy analysis indicated that the HNTs were dispersed uniformly on the nanoscale throughout the PCL matrix. Differential scanning calorimeter studies revealed that the PCL crystallinity was decreased in the nanocomposites, and the HNTs dispersed in the PCL matrix led to an increase in the non‐isothermal crystallization temperature of the PCL. Tensile and dynamic mechanical tests showed great enhancement in strength and stiffness at low HNT content, while still maintaining the ductility of the PCL. The glass transition temperature (Tg) of the pristine PCL was substantially increased with increase in filler loading, which indicates good reinforcing effect imparted by the addition of HNT. Melt rheological studies revealed that the nanocomposites exhibited strong shear thinning behavior, and a percolated network of HNT particles was formed. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
The effect of poly(caprolactone) (PCL) on the positive temperature coefficient of resistivity characteristics of polycarbonate (PC)/nickel (Ni)‐coated graphite (40 wt%) composites was investigated. The PTC trip temperature of PC/Ni‐coated graphite composites appeared at 155°C. On addition of PCL to PC/Ni‐coated graphite composites, the PTC trip temperature reduced to 125°C, well below the Tg of the PC (∼147°C), as well as the PC/PCL (∼136°C) blend. It is noteworthy that the observed PTC effect for PC/PCL (8 wt%)/Ni‐coated graphite (40 wt%) composites is highly reproducible during many heating cycles. The coefficient of thermal expansion (CTE) of PC was increased in presence of PCL. Thus, the mismatch in CTE of the PC and Ni‐coated graphite at a temperature well below the Tg of PC was enough to disrupt the continuous network structure that increased the resistivity of the composites. Storage modulus of PC/PCL/Ni‐coated graphite composites was higher than PC/Ni‐coated graphite composites. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
A six‐arm star‐shaped poly(ε‐caprolactone) (s‐PCL) based on cyclophosphazene core was obtained by presynthesis of a hydroxy‐teminated cyclophosphazene derivative and subsequent initiation of the ring‐opening polymerization of ε‐caprolactone, and its use in different proportions as toughening modifier of diglycidylether of bisphenol A/anhydride thermosets was studied. The star‐shaped polymer was characterized to have approximately 30 caprolactone units per arm. Differential scanning calorimetry revealed a nonsignificant influence on the curing process of the epoxy‐anhydride formulation by the addition of s‐PCL. The s‐PCL‐modified epoxy thermosets exhibited a great improvement in both toughness and strength compared with the neat resin, as the result of a joint effort by the internal rigid core and the external ductile polyester chains of s‐PCL. When the addition of the modifier was 3 wt %, an optimal mechanical and thermomechanical performance was achieved. The impact resistance and tensile strength of the cured epoxy resin were enhanced by 150% and 30%, respectively. The glass transition temperature was also increased slightly. Moreover, the addition of the star‐shaped modifier had little harmful effect on the thermal stability of the material. Thus s‐PCL was proved to be a superior toughening agent without sacrificing thermal and mechanical properties of the thermosets. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44384.  相似文献   

19.
Composites based on carbon nanostructures (CNS) and poly(ε‐caprolactone) (PCL) were produced by solvent casting technique. Single‐walled carbon nanotubes (SWCNTs) and carbon nanofibers (CNFs) were selected, to produce composite films with enhanced properties. The role of CNS type and percentage were investigated in terms of morphological, thermal, mechanical, and dielectrical properties. Composite morphological analysis reveals a good dispersion of CNS, at low and high content. Thermal properties underline the nucleation effect of CNS on PCL polymer matrix. Reinforcing effects in terms of increased tensile modulus were obtained with both nanofillers, but a higher reduction of the ductility was shown in PCL/CNF materials. A higher efficiency to form a conductive network, assessed by AC conductivity, was observed for SWCNTs at concentration lower than 1 wt. % © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Differential scanning calorimeter (DSC) and polarized optical microscopy (POM) have been used to investigate the isothermal and nonisothermal crystallization behavior of poly(ε‐caprolactone) (PCL)/multi‐walled carbon nanotube (MWNT) composites. PCL/MWNT composites have been prepared by mixing the PCL polymer with carboxylic groups containing multi‐walled carbon nanotubes (c‐MWNTs) in tetrahydrofuran solution. Raman spectrum of c‐MWNT indicated the possible presence of carboxylic acid groups at both ends and on the sidewalls of the MWNTs. The TEM micrograph showed that the c‐MWNT is well separated and uniformly dispersed in the PCL matrix. DSC isothermal results showed that the introduction of c‐MWNT into the PCL initiates strongly heterogeneous nucleation, which induced a change of the crystal growth process. The activation energy of PCL significantly decreases by adding 0.25 wt% c‐MWNT into PCL/c‐MWNT composites and then increases as c‐MWNT content increases. The result demonstrates that the addition of c‐MWNT into PCL induces the heterogeneous nucleation at lower c‐MWNT content and then inhibits the polymer chain transportation ability during crystallization at higher c‐MWNT content. In this study, we have also studied the nonisothermal crystallization kinetics and melting behavior of PCL/c‐MWNT composites at various cooling rates. The correlation among isothermal and nonisothermal crystallization kinetics and melting behavior of PCL/c‐MWNT composites can be also discussed. POLYM. ENG. SCI., 46:1309–1317, 2006. © 2006 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号