首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we evaluate p‐type passivated emitter and rear locally diffused (p‐PERL) and n‐type passivated emitter and rear totally diffused (n‐PERT) large area silicon solar cells featuring nickel/copper/silver (Ni/Cu/Ag) plated front side contacts. By using front emitter p‐PERL and rear emitter n‐PERT, both cell structures can be produced with only a few adaptations in the entire process sequence because both feature the same front side design: homogeneous n+ diffused region with low surface concentration, SiO2/SiNx:H passivation, Ni/Cu/Ag plated contacts. Energy conversion efficiencies up to 20.5% (externally confirmed at FhG‐ISE Callab) are presented for both cell structures on large area cells together with power‐loss analysis and potential efficiency improvements based on PC1D simulations. We demonstrate that the use of a rear emitter n‐PERT cell design with Ni/Cu/Ag plated front side contacts enables to reach open‐circuit voltage values up to 676 mV on 1–2 Ω cm n‐type CZ Si. We show that rear emitter n‐PERT cells present the potential for energy conversion efficiencies above 21.5% together with a strong tolerance to wafer thickness and bulk resistivity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Crystalline silicon solar cells based on all‐laser‐transferred contacts (ALTC) have been fabricated with both front and rear metallization achieved through laser induced forward transferring. Both the front and rear contacts were laser‐transferred from a glass slide coated with a metal layer to the silicon substrate already processed with emitter formation, surface passivation, and antireflection coating. Ohmic contacts were achieved after this laser transferring. The ALTC solar cells were fabricated on chemically textured p‐type Cz silicon wafers. An initial conversion efficiency of over 15% was achieved on a simple cell structure with full‐area emitter. Further improvements are expected with optimized laser transferring conditions, front grid pattern design, and surface passivation. The ALTC process demonstrates the advantage of laser processing in simplifying the solar cell fabrication by a one‐step metal transferring and firing process. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
We have developed a crystalline silicon solar cell with amorphous silicon (a‐Si:H) rear‐surface passivation based on a simple process. The a‐Si:H layer is deposited at 225°C by plasma‐enhanced chemical vapor deposition. An aluminum grid is evaporated onto the a‐Si:H‐passivated rear. The base contacts are formed by COSIMA (contact formation to a‐Si:H passivated wafers by means of annealing) when subsequently depositing the front silicon nitride layer at 325°C. The a‐Si:H underneath the aluminum fingers dissolves completely within the aluminum and an ohmic contact to the base is formed. This contacting scheme results in a very low contact resistance of 3.5 ±0.2 mΩ cm2 on low‐resistivity (0.5 Ω cm) p‐type silicon, which is below that obtained for conventional Al/Si contacts. We achieve an independently confirmed energy conversion efficiency of 20.1% under one‐sun standard testing conditions for a 4 cm2 large cell. Measurements of the internal quantum efficiency show an improved rear surface passivation compared with reference cells with a silicon nitride rear passivation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
High and stable lifetimes recently reported for n‐type silicon materials are an important and promising prerequisite for innovative solar cells. To exploit the advantages of the excellent electrical properties of n‐type Si wafers for manufacturing simple and industrially feasible high‐efficiency solar cells, we focus on back junction n+np+ solar cells featuring an easy‐to‐fabricate full‐area screen‐printed aluminium‐alloyed rear p+ emitter. Independently confirmed record‐high efficiencies have been achieved on n‐type phosphorus‐doped Czochralski‐grown silicon material: 18·9% for laboratory‐type n+np+ solar cells (4 cm2) with shadow‐mask evaporated front contact grid and 17·0% for front and rear screen‐printed industrial‐type cells (100 cm2). The electrical cell parameters were found to be perfectly stable under illumination. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
In this work, we report on ion‐implanted, high‐efficiency n‐type silicon solar cells fabricated on large area pseudosquare Czochralski wafers. The sputtering of aluminum (Al) via physical vapor deposition (PVD) in combination with a laser‐patterned dielectric stack was used on the rear side to produce front junction cells with an implanted boron emitter and a phosphorus back surface field. Front and back surface passivation was achieved by thin thermally grown oxide during the implant anneal. Both front and back oxides were capped with SiNx, followed by screen‐printed metal grid formation on the front side. An ultraviolet laser was used to selectively ablate the SiO2/SiNx passivation stack on the back to form the pattern for metal–Si contact. The laser pulse energy had to be optimized to fully open the SiO2/SiNx passivation layers, without inducing appreciable damage or defects on the surface of the n+ back surface field layer. It was also found that a low temperature annealing for less than 3 min after PVD Al provided an excellent charge collecting contact on the back. In order to obtain high fill factor of ~80%, an in situ plasma etching in an inert ambient prior to PVD was found to be essential for etching the native oxide formed in the rear vias during the front contact firing. Finally, through optimization of the size and pitch of the rear point contacts, an efficiency of 20.7% was achieved for the large area n‐type passivated emitter, rear totally diffused cell. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
We have presented thin Al2O3 (~4 nm) with SiNx:H capped (~75 nm) films to effectively passivate the boron‐doped p+ emitter surfaces of the n‐type bifacial c‐Si solar cells with BBr3 diffusion emitter and phosphorus ion‐implanted back surface field. The thin Al2O3 capped with SiNx:H structure not only possesses the excellent field effect and chemical passivation, but also establishes a simple cell structure fully compatible with the existing production lines and processes for the low‐cost n‐type bifacial c‐Si solar cell industrialization. We have successfully achieved the large area (238.95 cm2) high efficiency of 20.89% (front) and 18.45% (rear) n‐type bifacial c‐Si solar cells by optimizing the peak sintering temperature and fine finger double printing technology. We have further shown that the conversion efficiency of the n‐type bifacial c‐Si solar cells can be improved to be over 21.3% by taking a reasonable high emitter sheet resistance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
This paper reports on the implementation of carrier‐selective tunnel oxide passivated rear contact for high‐efficiency screen‐printed large area n‐type front junction crystalline Si solar cells. It is shown that the tunnel oxide grown in nitric acid at room temperature (25°C) and capped with n+ polysilicon layer provides excellent rear contact passivation with implied open‐circuit voltage iVoc of 714 mV and saturation current density J0b of 10.3 fA/cm2 for the back surface field region. The durability of this passivation scheme is also investigated for a back‐end high temperature process. In combination with an ion‐implanted Al2O3‐passivated boron emitter and screen‐printed front metal grids, this passivated rear contact enabled 21.2% efficient front junction Si solar cells on 239 cm2 commercial grade n‐type Czochralski wafers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents the first conversion efficiency above 20% for a multicrystalline silicon solar cell. The application of wet oxidation for rear surface passivation significantly reduces the process temperature and therefore prevents the degradation of minority‐carrier lifetime. The excellent optical properties of the dielectrically passivated rear surface in combination with a plasma textured front surface result in a superior light trapping and allow the use of substrates below 100 μm thickness. A simplified process scheme with laser‐fired rear contacts leads to conversion efficiencies of 20·3% for multicrystalline and 21·2% for monocrystalline silicon solar cells on small device areas (1 cm2). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
This paper shows for the first time a comparison of commercial‐ready n‐type passivated emitter , rear totally diffused solar cells with boron (B) emitters formed by spin‐on coating, screen printing, ion implantation, and atmospheric pressure chemical vapor deposition. All the B emitter technologies show nearly same efficiency of ~20%. The optimum front grid design (5 busbars and 100 gridlines), calculated by an analytical modeling, raised the baseline cell efficiency up to 20.5% because of reduced series resistance. Along with the five busbars, rear point contacts formed by laser ablation of dielectric and physical vapor deposition Al metallization resulted in another 0.4% improvement in efficiency. As a result, 20.9% efficient n‐type passivated emitter, rear totally diffused cell was achieved in this paper. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A solar cell process designed to utilise low‐temperature plasma‐enhanced chemical vapour deposited (PECVD) silicon nitride (SiNx) films as front and rear surface passivation was applied to fabricate multicrystalline silicon (mc‐Si) solar cells. Despite the simple photolithography‐free processing sequence, an independently confirmed efficiency of 18.1% (cell area 2 × 2 cm2) was achieved. This excellent efficiency can be predominantly attributed to the superior quality of the rear surface passivation scheme consisting of an SiNx film in combination with a local aluminium back‐surface field (LBSF). Thus, it is demonstrated that low‐temperature PECVD SiNx films are well suited to achieve excellent rear surface passivation on mc‐Si. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Up to now solar cells fabricated on tricrystalline Czochralski‐grown silicon (tri‐Si) have shown relatively low short‐circuit current densities of about 31–33 mA/cm2 because the three {110}‐oriented grains cannot effectively be textured by commonly used anisotropic etching solutions. In this work, we have optimised a novel chemical texturing step for tri‐Si and integrated it successfully into our solar cell process. Metal/insulator/semiconductor‐contacted phosphorus‐diffused n+p junction silicon solar cells with a silicon‐dioxide‐passivated rear surface and evaporated aluminium contacts were manufactured, featuring a spatially uniform surface texture over all three grains on both cell sides. Despite the simple processing sequence and cell structure, an independently confirmed record efficiency of 17.6% has been achieved. This excellent efficiency is mainly due to an increased short‐circuit current density of 37 mA/cm2 obtained by substantially reduced reflection and enhanced light trapping. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Thin solar cells on industrial Czochralski‐material were produced and analyzed. For the Random Pyramid – Passivated Emitter and Rear Cell (RP – PERC) with planar rear surface, a maximum efficiency of near 20% was achieved for 115 as well as 165 μm thickness. In comparison, cells textured at the rear surface with a standard industrial process reached about a 2% (absolute) lower efficiency. This difference is consistently explained by an increased rear surface recombination, whereas light trapping properties are excellent for both rear surface treatments. The Cz‐specific light‐induced degradation of the thin cells is investigated. Copyright © 2000 John Wiley & Sons, Ltd  相似文献   

13.
This paper demonstrates the potential of epitaxially grown Si wafers with doped layers for high‐efficiency solar cells. Boron‐doped 239 cm2 180–200 µm thick 2 Ω‐cm wafers were grown with and without 15 µm thick p+ layer, with a doping in the range of 1017~1018 cm−3. A layer transfer process involving porous Si layer to lift off epi‐Si wafers from the reusable substrate was used. The pp+ wafers were converted into n+pp+ passivated emitter rear totally diffused (PERT) cells by forming an oxide‐passivated POCl3‐diffused n+ emitter at the front, and oxide/nitride‐passivated epitaxially grown p+ BSF at the entire back, with local screen‐printed contacts. To demonstrate and quantify the benefit of the epi‐grown p+ layer, standard passivated emitter and rear cells (PERCs) with local BSF and contacts were also fabricated on p‐type epi‐Si wafers as well on commercial‐grade Cz wafers. Sentaurus 2D device model was used to assess the impact of the epi‐grown p+ layer, which showed an efficiency gain of ~0.5% for this PERT structure over the traditional PERC. This was validated by the cell results, which showed an efficiency of ~20.1% for the PERC, and ~20.3% for the PERT cell using epi‐Si wafers. Experimental data showed higher FF in PERT cells, largely because of the decrease in lateral resistance on the rear side. Efficiency gain, a result of higher FF, was greater than the recombination loss in the p+ layer because of the lightly doped thick p+ epi‐grown region used in this study. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
We present industrialized bifacial solar cells on large area (149 cm2) 2 cm CZ monocrystalline silicon wafers processed with industrially relevant techniques such as liquid source BBr3 and POCl3 open‐tube furnace diffusions, plasma enhanced chemical vapor deposition (PECVD) SiNx deposition, and screen printed contacts. The fundamental analysis of the paste using at boron‐diffused surface and the bifacial solar cell firing cycle has been investigated. The resulting solar cells have front and rear efficiencies of 16.6 and 12.8%, respectively. The ratio of the rear JSC to front JSC is 76.8%. It increases the bifacial power by 15.4% over a conventional solar cell at 20% of 1‐sun rear illumination, which equals to the power of a conventional solar cell with 19.2% efficiency. We also present a bifacial glass–glass photovoltaic (PV) module with 30 bifacial cells with the electrical characteristics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The in situ formation of an emitter in monocrystalline silicon thin‐film solar cells by solid‐state diffusion of dopants from the growth substrate during epitaxy is demonstrated. This approach, that we denote autodiffusion, combines the epitaxy and the diffusion into one single process. Layer‐transfer with porous silicon (PSI process) is used to fabricate n‐type silicon thin‐film solar cells. The cells feature a boron emitter on the cell rear side that is formed by autodiffusion. The sheet resistance of this autodiffused emitter is 330 Ω/□. An independently confirmed conversion efficiency of (14·5 ± 0·4)% with a high short circuit current density of (33·3 ± 0·8) mA/cm2 is achieved for a 2 × 2 cm2 large cell with a thickness of (24 ± 1) µm. Transferred n‐type silicon thin films made from the same run as the cells show effective carrier lifetimes exceeding 13 µs. From these samples a bulk diffusion length L > 111 µm is deduced. Amorphous silicon is used to passivate the rear surface of these samples after the layer‐transfer resulting in a surface recombination velocity lower than 38 cm/s. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
We report results obtained using an innovative approach for the fabrication of bifacial low‐concentrator thin Ag‐free n‐type Cz‐Si (Czochralski silicon) solar cells based on an indium tin oxide/(p+nn+)Cz‐Si/indium fluorine oxide structure. The (p+nn+)Cz‐Si structure was produced by boron and phosphorus diffusion from B‐ and P‐containing glasses deposited on the opposite sides of n‐type Cz‐Si wafers, followed by an etch‐back step. Transparent conducting oxide (TCO) films, acting as antireflection electrodes, were deposited by ultrasonic spray pyrolysis on both sides. A copper wire contact pattern was attached by low‐temperature (160°C) lamination simultaneously to the front and rear transparent conducting oxide layers as well as to the interconnecting ribbons located outside the structure. The shadowing from the contacts was ~4%. The resulting solar cells, 25 × 25 mm2 in dimensions, showed front/rear efficiencies of 17.6–17.9%/16.7–17.0%, respectively, at one to three suns (bifaciality of ~95%). Even at one‐sun front illumination and 20–50% one‐sun rear illumination, such a cell will generate energy approaching that produced by a monofacial solar cell of 21–26% efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Silicon solar cells that feature screen printed front contacts and a passivated rear surface with local contacts allow higher efficiencies compared to present industrial solar cells that exhibit a full area rear side metallization. If thermal oxidation is used for the rear surface passivation, the final annealing step in the processing sequence is crucial. On the one hand, this post‐metallization annealing (PMA) step is required for decreasing the surface recombination velocity (SRV) at the aluminum‐coated oxide‐passivated rear surface. On the other hand, PMA can negatively affect the screen printed front side metallization leading to a lower fill factor. This work separately analyzes the impact of PMA on both, the screen printed front metallization and the oxide‐passivated rear surface. Measuring dark and illuminated IV‐curves of standard industrial aluminum back surface field (Al‐BSF) silicon solar cells reveals the impact of PMA on the front metallization, while measuring the effective minority carrier lifetime of symmetric lifetime samples provides information about the rear side SRV. One‐dimensional simulations are used for predicting the cell performance according to the contributions from both, the front metallization and the rear oxide‐passivation for different PMA temperatures and durations. The simulation also includes recombination at the local rear contacts. An optimized PMA process is presented according to the simulations and is experimentally verified. The optimized process is applied to silicon solar cells with a screen printed front side metallization and an oxide‐passivated rear surface. Efficiencies up to 18.1% are achieved on 148.8 cm2 Czochralski (Cz) silicon wafers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
This work demonstrates the high potential of Al2O3 passivated black silicon in high‐efficiency interdigitated back contacted (IBC) solar cells by reducing surface reflectance without jeopardizing surface passivation. Very low reflectance values, below 0.7% in the 300–1000 nm wavelength range, together with striking surface recombination velocities values of 17 and 5 cm/s on p‐type and n‐type crystalline silicon substrates, respectively, are reached. The simultaneous fulfillment of requirements, low reflectance and low surface recombination, paves the way for the fabrication of high‐efficiency IBC Si solar cells using black silicon at their front surface. Outstanding photovoltaic efficiencies over 22% have been achieved both in p‐type and n‐type 9‐cm2 cells. 3D simulations suggest that efficiencies of up to 24% can be obtained in the future with minor modifications in the baseline fabrication process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we report on commercially viable screen printing (SP) technology to form boron emitters. A screen‐printed boron emitter and ion‐implanted phosphorus back surface field were formed simultaneously by a co‐annealing process. Front and back surfaces were passivated by chemically grown oxide capped with plasma‐enhanced chemical vapor deposition silicon nitride stack. Front and back contacts were formed by traditional SP and firing processes with silver/aluminum grid on front and local silver back contacts on the rear. This resulted in 19.6% efficient large area (239 cm2) n‐type solar cells with an open‐circuit voltage Voc of 645 mV, short‐circuit current density Jsc of 38.6 mA/cm2, and fill factor of 78.6%. This demonstrates the potential of this novel technology for production of low‐cost high‐efficiency n‐type silicon solar cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Bifacial solar cells and modules are a promising approach to increase the energy output of photovoltaic systems, and therefore decrease levelized cost of electricity (LCOE). This work discusses the bifacial silicon solar cell concepts PERT (passivated emitter, rear totally diffused) and BOSCO (both sides collecting and contacted) in terms of expected module cost and LCOE based on in‐depth numerical device simulation and advanced cost modelling. As references, Al‐BSF (aluminium back‐surface field) and PERC (passivated emitter and rear) cells with local rear‐side contacts are considered. In order to exploit their bifacial potential, PERT structures (representing cells with single‐sided emitter) are shown to require bulk diffusion lengths of more than three times the cell thickness. For the BOSCO concept (representing cells with double‐sided emitter), diffusion lengths of half the cell thickness are sufficient to leverage its bifacial potential. In terms of nominal LCOE, BOSCO cells are shown to be cost‐competitive under monofacial operation compared with an 18% efficient (≙ pMPP = 18 mW/cm2) multicrystalline silicon (mc‐Si) Al‐BSF cell and a 19% mc‐Si PERC cell for maximum output power densities of pMPP ≥ 17.3 mW/cm2 and pMPP ≥ 18.1 mW/cm2, respectively. These values assume the use of $10/kg silicon feedstock for the BOSCO and $20/kg for the Al‐BSF and PERC cells. For the PERT cell, corresponding values are pMPP ≥ 21.7 mW/cm2 and pMPP ≥ 22.7 mW/cm2, respectively, assuming the current price offset (≈50%, at the time of October 2014) of n‐type Czochralski‐grown silicon (Cz‐Si) compared with mc‐Si wafers. The material price offset of n‐type to p‐type Cz‐Si wafers (≈15%, October 2014) currently accounts for approximately 1 mW/cm2, which correlates to a conversion efficiency difference of 1%abs for monofacial illumination with 1 sun. From p‐type mc‐Si to p‐type Cz‐Si (≈30% wafer price offset, October 2014), this offset is approximately 2.5 mW/cm2 for a PERT cell. When utilizing bifacial operation, these required maximum output power densities can be transformed into required minimum rear‐side illumination intensities for arbitrary front‐side efficiencies ηfront by means of the performed numerical simulations. For a BOSCO cell with ηfront = 18%, minimum rear‐side illumination intensities of ≤ 0.02 suns are required to match a 19% PERC cell in terms of nominal LCOE. For an n‐type Cz‐Si PERT cell with ηfront = 21%, corresponding values are ≤ 0.11 suns with 0.05 suns being the n‐type to p‐type material price offset. This work strongly motivates the use of bifacial concepts to generate lowest LCOE. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号