首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In this research, nanocomposite nanofibrous webs of poly(acrylic acid) (PAA)/multi‐walled carbon nanotubes (MWNTs) were obtained via electrospinning. The effect of MWNTs concentration on the morphology and mechanical properties of PAA/MWNTs nanofibers was investigated by changing the MWNTs content from 0 to 5 wt%. The results showed that average diameter of nanofibers increased with increasing the MWNTs concentration and presence of MWNTs led to the enhancement of mechanical properties. Also, the results revealed that the strength, modulus, and elongation at break of samples increased 3.22, 2.70, and 4.27 fold, respectively, after adding 3 wt% of MWNTs. In addition, the effect of rotating speed of collector on the orientation of PAA nanofibers and its effect on mechanical properties was investigated. Scanning electron microscopy (SEM) studies demonstrated that the degree of nanofibers orientation increased with the augmentation of drum speed to 25 rps. Moreover, the average nanofibers diameter decreased with the increase of drum speed. Improvement of nanofiber orientation resulted in superior mechanical properties that is, higher strength and modulus of aligned nanofiber layers were obtained in comparison to nonaligned layers (12.6 and 26.6 fold, respectively). POLYM. COMPOS., 37:3149–3159, 2016. © 2015 Society of Plastics Engineers  相似文献   

2.
The focus of this work is the study of the dispersion mechanism of soybean stock‐based nanofibers in a plastic matrix. The cellulose nanofibers were extracted from soybean stock by chemo‐mechanical treatments. These are bundles of cellulose nanofibers with a diameter ranging between 50 and 100 nm and lengths of thousands of nanometers. These nanofibers were characterized by atomic force microscopy and transmission electron microscopy. X‐ray diffraction studies showed that the soybean stock nanofibers had a relative percentage crystallinity of about 48%. Selective chemical treatments increased the cellulose content of soybean stock nanofibers from 41 to 61%. The matrix polymers used in this project were poly(vinyl alcohol) (PVA) and polyethylene (PE). The mechanical properties of nanofiber‐reinforced PVA film demonstrated a 4‐ to 5‐fold increase in tensile strength, as compared to the untreated fiber‐blend‐PVA film. One of the problems encountered in the use of nanoreinforcements lies in the difficulty in ensuring good dispersion of the filler in the composite material. Improved dispersion level of nanofibers within a thermoplastic was achieved by adding ethylene‐acrylic oligomer emulsion as a dispersant. In the solid phase of nanofiber‐blend‐PE composites, the compression‐molded samples showed that improved mechanical properties were achieved with coated nanofibers. Copyright © 2006 Society of Chemical Industry  相似文献   

3.
The continuous nanofiber yarns of poly(L ‐lactide) (PLLA)/nano‐β‐tricalcium phosphate (n‐TCP) composite are prepared from oppositely charged electrospun nanofibers by conjugate electrospinning with coupled spinnerets. The morphology and mechanical properties of PLLA/n‐TCP nanofiber yarns are characterized by scanning electron microscope, transmission electron microscope, and electronic fiber strength tester. The results show that PLLA/n‐TCP nanofibers are aligned well along the longitudinal axis of the yarn, and the concentration of PLLA plays a significant role on the diameter of the nanofibers. The thicker yarn of PLLA/n‐TCP composite with the weight ratio of 10/1 has been produced by multiple conjugate electrospinning using three pairs of spinnerets, and the yarn has tensile strength of 0.31cN/dtex. A preliminary study of cell biocompatibility suggests that PLLA/n‐TCP nanofiber yarns may be useable scaffold materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

4.
The effect of NaSCN salt on the spinnability of polyacrylonitrile (PAN) solutions, its resulting morphology, mechanical property, and the flame resistance of the resulting electrospun nanofibers were studied. The intent was to develop a method to produce nanosized carbon fiber precursors with good properties. Electrospun PAN nanofibers from 9.7–9.9 wt% PAN/sodiumthiocyanate (NaSCN) (aq)/Dimethylformamide (DMF) solutions with 1.0–2.9 wt% NaSCN (aq), and 10–15 wt% PAN/DMF solutions without salt exhibited good spinnability and morphology with no beading in the range of applied voltage (18–20 kV) and take‐up velocity (9.8–12.3 m/s). The relatively high take‐up velocity produced good yarn alignment. The diameter distributions of the PAN nanofibers containing the NaSCN salt were narrower than those of the PAN/DMF nanofibers without the salt. It was determined that the maximum content of salt for production of electrospun PAN nanofibers with good morphology was below 3.8 wt% (40 wt% based on PAN). The salt concentration can positively influence on the narrow diameter distributions of the resulting electrospun fibers. Also, it could be confirmed that the salt effect on mechanical property and flame resistance of electrospun PAN nanofibers. In particular, the elongation of the PAN nanofiber with 2.9 wt% NaSCN (aq) was significantly increased as much as 186% compared with that of 10 wt% PAN nanofiber without the salt. The flame resistance and mechanical properties of the stabilized PAN nanofibers with NaSCN (aq) increased after oxidization process. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers.  相似文献   

5.
Optimization of the mechanical properties is necessary in the applications of electrospun nanofibrous matrices. In this work, mechanical reinforcement of electrospun nanofiber membranes of water‐soluble polymer by the incorporation of commercial nanodiamonds (NDs) was studied. Through an ND/poly(vinyl alcohol) (ND/PVA) model system, it is demonstrated that 155% improvement of Young's modulus, 89% increase in tensile strength, and 336% elevation in energy to break are achieved by the addition of only 2 wt% ND. Fourier transform infrared spectroscopy results suggest the existence of molecular interactions between NDs and PVA matrix, which contributes to the effective load transfer from the polymer matrix to the fillers. However, higher level of ND addition (>2 wt%) aggravates the agglomeration of nanofillers in PVA matrix and offsets the reinforcing effect, as ND agglomerates may act as flaws in composite nanofibers. Furthermore, NDs have optimizing effect on the morphology of ND/PVA nanofibers through increasing the conductivity of the electrospinning solution. Therefore, ND nanofillers possess the potential to improve the mechanical performance of water‐soluble polymer‐based nanofiber membranes. POLYM. COMPOS., 34:1735–1744, 2013. © 2013 Society of Plastics Engineers  相似文献   

6.
Graphene oxide (GO) was well dispersed in poly(vinyl alcohol) (PVA) diluted aqueous solution, and then the mixture was electrospun into GO/PVA composite nanofibers. Electron microscopy and Raman spectroscopy on the as‐prepared and calcined samples confirm the uniform distribution of GO sheets in the nanofibers. The thermal and mechanical properties of the nanofibers vary considerably with different GO filler contents. The decomposition temperatures of the GO/PVA composite nanofiber dropped by 38–50°C compared with pure PVA. A very small loading of 0.02 wt % GO increases the tensile strength of the nanofibers by 42 times. A porous 3D structure was realized by postcalcining nanofibers in H2. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
One of the major problems of nanofiber scaffold or other devices like cardiovascular or blood‐contacting medical devices is their weak mechanical properties and the lack of hemocompatibility of their surfaces. In this study, halloysite nanotubes (HNTs) and carbon nanotubes (CNTs) were incorporated within poly(lactic‐co‐glycolic acid) (PLGA) nanofibers and the mechanical property and hemocompatibility of both types of composite nanofibers with different doping levels were thoroughly investigated. The morphology and internal distribution of the doped nanotubes within the nanofibers were characterized using scanning electron microscopy and transmission electron microscopy. Mechanical properties of the electrospun nanofibers were tested using a material testing machine. The hemocompatibility of the composite nanofibers was examined through hemolytic and anticoagulant assay, respectively. We show that the doped HNTs or CNTs are distributed in the nanofibers with a coaxial manner and the incorporation of HNTs or CNTs does not significantly change the morphology of the PLGA nanofibers. Importantly, the incorporation of HNTs or CNTs within PLGA nanofibers significantly improves the mechanical property of PLGA nanofibers, and PLGA nanofibers with or without doping of the HNTs and CNTs display good anticoagulant property and negligible hemolytic effect to human red blood cells. With the enhanced mechanical property, great hemocompatibility, and previously demonstrated biocompatibility of both HNTs‐ and CNTs‐doped composite PLGA nanofibers, these composite nanofibers may be used as therapeutic artificial tissue/organ substitutes for tissue engineering applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
To engineer tissue restoration, it is necessary to provide a bioactive, mechanically robust scaffold. Electrospun poly(ε‐caprolactone) (PCL) nanofiber is a promising biomaterial candidate with excellent mechanical properties, but PCL scaffolds are inert and lack natural cell recognition sites. To overcome this problem we investigated the incorporation of Antheraea pernyi silk fibroin (ASF) containing inherent RGD tripeptides with PCL in electrospinning process. The mixing ratios showed remarkable impact on the properties of hybrid nanofibers. Increasing PCL content significantly enhanced the mechanical properties of nanofibers. In particular, the mechanical properties were remarkably enhanced when PCL content increased from 50 wt% to 70 wt%. Moreover, the biological assays based on endothelial cells showed promoted cell viability when ASF content reached to 30 wt%. The data demonstrated that the nanofiber containing 70% of PCL and 30% of ASF achieved the most balanced performances for integrating the mechanical properties of PCL and the bioactivity of ASF. Furthermore, biomimetic alignment of 70PCL/30ASF nanofibers was achieved, which could support PC12 neuron‐like cell growth and guide neurite outgrowth, providing a potentially useful option for the engineering of oriented tissues. The results show that the PCL/ASF hybrid nanofibers can be considered as a promising candidate for tissue engineering scaffolds. POLYM. ENG. SCI., 57:206–213, 2017. © 2016 Society of Plastics Engineers  相似文献   

9.
The electrospun nanofibers emerge several advantages because of extremely high specific surface area and small pore size. This work studies the effect of PVA nanofibers diameter and nano‐sized TiO2 on optical properties as reflectivity of light and color of a nanostructure assembly consisting polyvinyl alcohol and titanium dioxide (PVA/TiO2) composite nanofibers prepared by electrospinning technique. The PVA/TiO2 composite spinning solution was prepared through incorporation of TiO2 nanoparticles as inorganic optical filler in polyvinyl alcohol (PVA) solution as an organic substrate using the ultrasonication method. The morphological and optical properties of collected composites nanofibers were highlighted using scanning electron microscopy (SEM) and reflective spectrophotometer (RS). The reflectance spectra indicated the less reflectance and lightness of composite with higher nanofiber diameter. Also, the reflectance and lightness of nanofibers decreased with increasing nano‐TiO2 concentration. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Composite nanofiber meshes of well‐aligned polyacrylonitrile (PAN)/polyvinylpyrrolidone (PVP) nanofibers containing multiwalled carbon nanotubes (MWCNTs) were successfully fabricated by a magnetic‐field‐assisted electrospinning (MFAES) technology, which was confirmed to be a favorable method for preparation of aligned composite nanofibers in this article. The MFAES experiments showed that the diameters of composite nanofibers decreased first and then increased with the increase of voltage and MWCNTs content. With the increase of voltage, the degree of alignment of the composite nanofibers decreased, whereas it increased with increasing MWCNTs concentration. Transmission electron microscopy observation showed that MWCNTs were parallel and oriented along the axes of the nanofibers under the low concentration. A maximum enhancement of 178% in tensile strength was manifested by adding 2 wt % MWCNTs in well‐aligned composite nanofibers. In addition, the storage modulus of PAN/PVP/MWCNTs composite nanofibers was significantly higher than that of the PAN/PVP nanofibers. Besides, due to the highly ordered alignment structure, the composite nanofiber meshes showed large anisotropic surface resistance, that is, the surface resistance of the composite nanofiber films along the fiber axis was about 10 times smaller than that perpendicular to the axis direction. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41995.  相似文献   

11.
Investigation of the potential use of nanofibers to reinforce composites has gained significance in many applications. In this article, the nanofiber mats of poly(acrylic acid) (PAA) and styrene–butadiene–styrene (SBS) triblock copolymer with composites structure were interweaved by double needle electrospinning process. The multiple nanofiber mats were added to conventional water‐swellable rubber (WSR). Improved mechanical and physical properties of WSR were obtained. Enhancement of the swellability of WSR + PAA/SBS nanofiber mats was derived from the PAA constituent absorbing water from the surface into the bulk and introducing random internal water channels between discontinuous superabsorbent polymers. The role of SBS nanofibers in the composite of WSR + PAA/SBS nanofiber mats was more related to the mechanical properties, where the breaking force of the composite increased to twice that of the conventional WSR. Interestingly, after immersion of the WSR + PAA/SBS nanofiber mats in water for 1 week, there was only a slight decrease in their mechanical properties of less than 5% compared to the dry state. The mechanisms and effects of the nanofiber mats in enhancing the mechanical and water swelling properties of WSR are also discussed. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44213.  相似文献   

12.
Single‐walled carbon nanotube (SWCNT) polyvinylimidazole (PVI) composites have been prepared by in situ emulsion polymerization. Dispersion of raw SWCNTs in the PVI matrix was improved by surface modification of the SWCNTs using nitric acid treatment and air oxidation. The carbonyl‐terminated SWCNTs were covalently bonded to PVI by in situ polymerization and the SWCNT/PVI composite was thus obtained. The morphological and structural characterizations of the surface‐functionalized SWCNTs and SWCNT/PVI composites were carried out by Fourier transform infrared spectroscopy, X‐ray diffraction, conductivity measurements, scanning, and transmission electron microscopy. Thermograms of the materials were determined by the differential scanning calorimetry technique. The characterization results indicate that PVI was covalently bonded to SWCNTs and a new material was then obtained. The functionalized SWCNTs showed homogenous dispersion in the composites, whereas purified SWCNT resulted in poor dispersion and nanotube agglomeration. SWCNT/PVI composites exhibited chemical stability enhancement in many common solvents. I–V curves of the samples exhibit an ohmic character. Conductivity values for pure SWCNTs, pure PVI and SWCNT/PVI composite were measured to be 3.47, 2.11 × 10−9, and 2.3 × 10−3 S/m, respectively. Because of resonance, a large dielectric constant is obtained for SWCNT/PVI composite, which is not observed for ordinary materials. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
Cocontinuous cellulose acetate (CA)/polyurethane (PU) composite nanofibers were obtained through electrospinning of partially miscible CA and PU in 2:1 N,N‐dimethylacetamide (DMAc)/acetone mixture solvent. Their structures, mechanical, and thermal properties were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The structures and morphologies of the nanofibers were affected by component ratio in the binary mixtures. PU component not only facilitated the electrospinning of CA at CA concentration down to 12 wt%, but reinforced the tensile strength of CA/PU nanofibrous mats, while semirigid component CA in the composite nanofibers could greatly improve the rigidity and dimensional stability of CA/PU nanofibrous mats. In a series of nanofibrous mats with varied CA/PU composition ratios, CA/PU 20/80 showed excellent tensile strength and Young's modulus. The residual product after selective removal of any one of the components in CA/PU composite nanofibers by washing with proper solvent maintained the fiber structure but greatly reduced the fiber size, suggesting CA/PU composite fibers showed a cocontinuous nanofiber structure due to phase separation in the spinning solution and in the course of electrospinning. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

14.
Tian M  Gao Y  Liu Y  Liao Y  Xu R  Hedin NE  Fong H 《Polymer》2007,48(9):2720-2728
The objective of this research was to study the reinforcement of electrospun nylon 6/fibrillar silicate nanocomposite nanofibers on Bis-GMA/TEGDMA dental composites. The hypothesis was that the uniform distribution of nano-scaled and highly aligned fibrillar silicate single crystals into electrospun nylon 6 nanofibers would improve the mechanical properties of the resulting nanocomposite nanofibers, and would lead to the effective reinforcement of dental composites. The nylon 6/fibrillar silicate nanocomposite nanofibers were crystalline, structurally oriented and had an average diameter of approximately 250 nm. To relatively well distribute nanofibers in dental composites, the nanofiber containing composite powders with a particle structure similar to that in interpenetration networks were prepared first, and then used to make the dental composites. The results indicated that small mass fractions (1% and 2%) of nanofiber impregnation improved the mechanical properties substantially, while larger mass factions (4% and 8%) of nanofiber impregnation resulted in less desired mechanical properties.  相似文献   

15.
We investigated the effects of two different solvent types and three solution concentrations on the electrospinning of solid state polymerized polyamide 66 (SSP PA66) nanofiber yarns. Nanofiber yarns were electrospun from SSP PA66 solutions in formic acid and formic acid/chloroform (3/1), using two oppositely metallic spinnerets system. Scanning electron microscopy (SEM) and X‐ray diffraction (XRD) were employed to characterize the morphology and properties of the nanofibrous yarns. Experimental results show that adding chloroform to formic acid as a binary solvent increases viscosity of polymer solution and the nanofibers diameter significantly. XRD patterns reveal that the presence of chloroform affects the crystallinity and the mechanical properties of the produced nanofibrous yarns. PA66 nanofiber yarn from 10 wt % formic acid/chloroform (3/1) solution was successfully electrospun with strength and modulus of 120.16 MPa and 1216.27 MPa respectively. It is also shown that the solution concentration has a significant effect on the modulus of the nanofibers yarns. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
The mechanical response of epoxy resins filled without treated carbon nanofibers and carboxylated ones has been evaluated through tensile tests. The elastic properties did not improve compared to the neat epoxy resin regardless of filler content or functionalization treatment, while the tensile strength and the elongation at break were reduced for the highest filler content (1 wt%). Fractographic analysis showed that composites reinforced with carboxylated nanofibers showed better filler dispersion than those without treatment. However, in both cases, the fibers tended to agglomerate and the formation of porosity was favored. The size of bundles of nanofibers rose with the content of nanofiller and for the same addition of carbon nanofibers, the size and distribution was respectively bigger and wider for the untreated carbon nanofibers‐reinforced composites than for the carboxylated carbon nanofiber‐reinforced composites. These defects degraded the mechanical response. The dilute suspension of clusters model was applied to estimate the elastic properties, showing agreement with the experimental results. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

17.
Multi‐walled carbon nanotubes (CNTs) and cellulose nanofibers (CNFs) reinforced shape memory polyurethane (PU) composite fibers and films have been fabricated via extrusion and casting methods. Cellulose nanofibers were obtained through acid hydrolysis of microcrystalline cellulose. This treatment aided in achieving stable suspensions of cellulose crystals in dimethylformamide (DMF), for subsequent incorporation into the shape memory matrix. CNTs were covalent functionalized with carboxyl groups (CNT‐COOH) and 4,4′‐methylenebis (phenylisocyanate) (MDI) (CNT‐MDI) to improve the dispersion efficiency between the CNT and the polyurethane. Significant improvement in tensile modulus and strength were achieved by incorporating both fillers up to 1 wt% without sacrificing the elongation at break. Electron microscopy was used to investigate the degree of dispersion and fracture surfaces of the composite fibers and films. The effects of the filler (type and concentration) on the degree of crystallinity and thermal properties of the hard and soft segments that form the PU sample were studied by calorimetry. Overall, results indicated that the homogeneous dispersion of nanotubes and cellulose throughout the PU matrix and the strong interfacial adhesion between nanotubes and/or cellulose and the matrix are responsible for the enhancement of mechanical and shape memory properties of the composites. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
Nylon‐6 and nanoclay/nylon‐6 composite nanofibers were prepared by electrospinning technique, in which formic acid was used as a solvent for good solubility of nylon‐6. The diameter of nylon‐6 and nanoclay/nylon‐6 nanofibers was below 350 nm and had smooth surfaces. The DSC heating curves of nylon‐6 and composites nanofibers show two endotherm behaviors, Tm1 (about 214°C) and Tm2 (about 220°C), corresponding to the melting events of γ‐form and α‐form crystals, respectively. The WAXs study showed that the γ‐crystalline phase predominantly present in both nylon‐6 and nanoclay/nylon‐6 nanofibers. The mechanical properties of the nanoclay/nylon‐6 composite nanofibers were higher than neat nylon‐6 electrospun nanofibers, which was decreased as the quantity of the clay increased. It might be due to the aggregation of nanoclay at high concentration. The thermal properties of the composite nanofibers were higher than neat nylon‐6 nanofibers. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

19.
Sea‐island polyurethane (PU)/polycarbonate (PC) composite nanofibers were obtained through electrospinning of partially miscible PU and PC in 3 : 7 (v/v) N,N‐dimethylformamide (DMF) and tetrahydrofuran (THF) mixture solvent. Their structures, mechanical, and thermal properties were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric (TG), and differential scanning calorimetry (DSC). The structures and morphologies of the nanofibers were influenced by composition ratio in the binary mixtures. The pure PC nanofiber was brittle and easy to break. With increasing the PU content in the PU/PC composite nanofibers, PU component not only facilitated the electrospinning of PC but improved the mechanical properties of PU/PC nanofibrous mats. In a series of nanofibrous mats with varied PU/PC composition ratios, PU/PC 70/30 showed excellent tensile strength of 9.60 Mpa and Young's modulus of 55 Mpa. After selective removal of PC component in PU/PC composite nanofibers by washing with acetone, the residual PU maintained fiber morphology. However, the residual PU nanofiber became irregular and contained elongated indents and ridges along the fiber surface. PU/PC composite fibers showed sea‐island nanofiber structure due to phase separation in the spinning solution and in the course of electrospinning. At PC content below 30%, the PC domains were small and evenly dispersed in the composite nanofibers. As PC content was over 50%, the PC phases became large elongated aggregates dispersed in the composite nanofibers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Electrospun functionalized polyacrylonitrile grafted glycidyl methacrylate (PAN‐g‐GMA) nanofibers are incorporated between the plies of a conventional carbon fiber/epoxy composite to improve the composite's mechanical performance. Glycidyl methacrylate (GMA) is successfully grafted onto polyacrylonitrile (PAN) polymer powder via a free radical mechanism. Characterization of the electrospun PAN and PAN‐g‐GMA nanofibers indicates that the grafting of GMA does not significantly alter the tensile properties of the PAN nanofibers but results in an increase in the diameter of nanofibers. Statistical analysis of the mechanical characterization studies on PAN‐carbon/epoxy hybrid composites conclusively shows that the composite reinforced with functionalized PAN nanofibers has greater mechanical properties than that of both the neat PAN nanofiber enriched hybrid composite and control composite (without nanofibers). The improved performance is attributed to the grafted glycidyl groups on PAN, leading to stronger interactions between the nanofibers and the epoxy matrix. PAN‐g‐GMA nanofiber reinforced composite outperforms their neat PAN counterparts in tensile strength, short beam shear strength, flexural strength, and Izod impact energy absorption by 8%, 9%, 6%, and 8%, respectively. Compared to the control composite, the improvements resulting from the PAN‐g‐GMA nanofiber incorporation are even more pronounced at 28%, 41%, 32%, and 21% in the corresponding tests, respectively.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号