首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of thermo‐oxidative aging on the vibration damping characteristics of the conventional fabric composites reinforced by three‐dimensional (3D) and four‐directional (4Dir) braided preform and laminated plain woven fabric and the 3D‐4Dir braided graphene‐based carbon fiber composites was investigated. Specimens were isothermally aged at 140 °C for various periods of time up to 1,200 h. The results indicated that the thermo‐oxidative aging resulted in deterioration of the matrix and interface performance, in the form of chain scissions, weight loss, microcracks and interfacial debonding, which should be responsible for the decrease of nature frequency and the increase of damping coefficient of the composites. After aging for 1,200 h, the first nature frequency and first damping coefficient retention rates of 3D‐4Dir braided graphene‐coated carbon fiber/epoxy composite were 5.5% and 6.4% higher than those of laminated composite, respectively. One of the reasons was the integrated structure of 3D‐4Dir braided composite exposed lower fiber end area to air than that of laminated composite, leading to less interface oxidation. Another reason was that the graphene reinforced gradient interphase provided an effective shield against interface oxidation and restricted the movement of the different phase of the materials at the composites interface. This synergetic reinforcing effect of 3D‐4Dir braided structure and graphene reinforced hierarchical interface provides an easy and effective way to design and improve the thermo‐oxidative stability of carbon fiber reinforced polymer composites. POLYM. COMPOS., 37:2871–2883, 2016. © 2015 Society of Plastics Engineers  相似文献   

2.
紫外老化对芳纶/环氧复合材料性能和结构的影响   总被引:6,自引:0,他引:6  
通过紫外老化试验(温度(40±5)℃,湿度40%),研究了芳纶、环氧及其复合材料的力学性能、玻璃化转变温度、失重随老化时间的变化,并用红外光谱分析了芳纶的结构变化。结果表明:经紫外老化后,芳纶/环氧的拉伸强度、失重率有明显的变化,芳纶结构和复合材料的玻璃化转变温度无明显的变化。  相似文献   

3.
In this article, a new three‐dimensional (3D) finite element modeling is developed to investigate the effect of interfacial properties on the thermophysical properties of 3D braided composites. The yarn is considered as uniaxial fiber‐reinforced composites, and its effective thermophysical properties are obtained by a representative volume cell constructed using the collision algorithm. In addition, based on the periodic nonadiabatic temperature boundary conditions and displacement boundary conditions, the thermophysical properties of 3D braided composites are predicted and compared with the experimental results, in which a good agreement is achieved. A comparison is conducted between the effect of interfacial properties on the thermophysical properties of 3D four‐directional (4D) braided composites and that of 3D5D braided composites. The results acquired show that the interfacial properties are significant factors that affect the thermophysical properties of 3D4D braided composites, but they have no obvious effects on the thermophysical properties of 3D5D braided composites. POLYM. COMPOS., 35:1690–1700, 2014. © 2013 Society of Plastics Engineers  相似文献   

4.
In order to use the glass fiber reinforced polyphenylene sulfide composites (GF/PPS) in high temperature environments, thermal aging performance of two kinds of commercial grade PPS composites, reinforced by 40% glass fiber, PPS-G40 HM and 1140L4, in thermal aging temperature of 250°C was compared by tensile strength, oxidized layer, color, crystallization and melting behavior. The results showed that tensile strength of GF/PPS composites is significantly decreased with increasing of aging time below 200 h and the tensile strength of aged PPS-G40 HM is higher than that of aged 1140L4. The thickness of dark color area is increased with increasing of aging time. The thickness of oxidized layer of 1140L4 is thinner than that of PPS-G40 HM. However, the color of oxidized layer of PPS-G40 HM is lighter than that of 1140L4. The recrystallization in thermal aging results in the formation of crystal with higher melting point and increased melting temperature of GF/PPS composites. It is found that addition of epoxy resin can increase the initial mechanical property and improve the thermal aging performance of GF/PPS composites. A novel modified GF/PPS composite with higher thermal aging properties was obtained.  相似文献   

5.
玻纤/碳纤维复合芯热老化是影响新型电力输电导线服役寿命的关键因素。本研究对输电导线玻纤/碳纤复合芯进行了人工加速老化试验,重点研究了老化过程中复合芯质量和机械性能变化,并利用复合芯微观组成变化对老化机理进行了分析。人工加速老化试验结果表明,在160℃进行了6000h高温热老化试验后,复合芯的质量、弯曲强度和拉伸强度保持率分别为96.5%,90.5%与81.5%,新型导线用复合芯表现出优异的耐热老化行为;复合芯的热老化行为与小分子分解速率和氧气扩散反应速率相关,长期热氧老化会腐蚀树脂基体,在复合芯表面形成疏松的玻纤层,进而影响到复合芯的机械性能。  相似文献   

6.
Delamination is the most common failure mode in laminated composites due to the reduced strength in the through‐the‐thickness direction. Air‐jet texturing was used to produce bulk and loops in the yarn, which provides more surface contact between the fibers and the resin. The development of core‐and‐effect textured glass yarns and the effect of texturing parameters were presented in the previous article. This article describes the effect of texturing on the mechanical properties including tensile properties, flexure properties, interlaminar shear strength (ILSS) and fracture toughness (Mode I) of glass laminated composites. The composites of plain and twill weave fabrics were developed from both the textured and nontextured yarns. It was observed that the tensile properties decreased and the flexure properties remained unchanged after texturing. However, significant improvement was observed in ILSS and the Mode I fracture toughness of the composites after texturing. The bulkier, loopy structure of the textured yarn provided more surface contact between the fiber and the resin and significantly improved the bonding strength. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

7.
In this study, randomly oriented short jute/bagasse hybrid fiber‐reinforced epoxy novolac composites were prepared by keeping the relative volume ratio of jute and bagasse of 1:3 and the total fiber loading 0.40 volume fractions. The effect of jute fiber hybridization and different layering pattern on the physical, mechanical, and thermal properties of jute/bagasse hybrid fiber‐reinforced epoxy novolac composites was investigated. The hybrid fiber‐reinforced composites exhibited fair water absorption and thickness swelling properties. To investigate the effect of layering pattern on thermomechanical behavior of hybrid composites, the storage modulus and loss factor were determined using dynamic mechanical analyzer from 30 to 200°C at a frequency of 1 Hz. The fracture surface morphology of the tensile samples of the hybrid composites was performed by using scanning electron microscopy. The morphological features of the composites were well corroborated with the mechanical properties. Thermogravimetric analysis indicated an increase in thermal stability of pure bagasse composites with the incorporation of jute fibers. The incorporation of hybrid fibers results better improvement in both thermal and dimensional stable compared with the pure bagasse fiber composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
针对T700碳纤维增强环氧树脂复合材料的热降解行为以及回收所得碳纤维的力学性能进行了研究。研究结果表明,碳纤维的存在增加了环氧树脂降解时所需的活化能,热降解反应的温度、时间和气氛等因素对环氧树脂基体降解效果以及回收碳纤维力学性能均有影响。在空气条件下500℃处理30 min后碳纤维表面没有残留物,但其回收纤维的拉伸强度保留率仅为77.6%。通过首先在氮气气氛高温短时热处理,再在空气气氛下450℃进行30 min热降解的两步法处理后,碳纤维表面残炭得到去除,回收碳纤维的拉伸强度保留率达到了90.4%,由其制备单向复合材料的层间剪切强度保留率可达到75.8%。  相似文献   

9.
Three‐dimensional (3D) braided carbon fiber reinforced polyetheretherketone (denoted as CF3D/PEEK) composites with various fiber volume fractions were prepared via hybrid woven plus vacuum heat‐pressing technology and their tribological behaviors against steel counterpart with different normal loads at dry sliding were investigated. Contrast tribological tests with different lubricants (deionized water and sea water) and counterparts made from different materials (epoxy resin, PEEK) were also conducted. The results showed that the incorporation of 3D braided carbon fiber can greatly improve the tribological properties of PEEK over a certain range of carbon fiber volume fraction (Vf) and an optimum fiber loading of ∼54% exists. The friction coefficient of the CF3D/PEEK composites decreased from 0.195 to 0.173, while the specific wear rate increased from 1.48 × 10−7 to 1.78 × 10−7 mm3 Nm−1 with the normal load increasing from 50 to 150 N. Abrasive mechanism was dominated when the composites sliding with GCr15 steel counterpart under dry and aqueous lubrication conditions. Deionized water and sea water lubricants both significantly reduced the wear of the CF3D/PEEK composites. When sliding with neat PEEK counterpart, the CF3D/PEEK composites possess lower friction coefficient than those against epoxy resin and GCr15 steel counterparts. In general, CF3D/PEEK composites possess excellent tribological properties and comprehensive mechanical performance, which makes it become a potential candidate for special heat‐resisting tribological components. POLYM. COMPOS., 36:2174–2183, 2015. © 2014 Society of Plastics Engineers  相似文献   

10.
Bis(4‐cyanato‐3,5‐dimethylphenyl)anisylmethane was prepared by treating CNBr with bis(4‐hydroxy‐3,5‐dimethylphenyl)anisylmethane and blended with commercial epoxy resin in different ratios and cured at 120°C for 2 h, 180°C for 1 h, and postcured at 220°C for 1 h using diamino diphenyl methane as curing agent. Castings of neat resin and blends were prepared and characterized. The composite laminates were also fabricated with glass fiber using the same composition. The tensile strength of the composites increased with increase in cyanate content (3, 6, and 9%) from 322 to 355 MPa. The fracture toughness values also increased from 0.7671 kJ/m2, for neat epoxy resin, to 0.8615 kJ/m2, for 9% cyanate ester‐modified epoxy system. The 10% weight loss temperature of pure epoxy (358°C) was increased to 390°C by the incorporation of cyanate ester resin. The incorporation of cyanate ester up to 9% in the epoxy resin increases the Tg from 143 to 147°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
This article investigated the effect of moisture on the tensile strength and in‐plane shear of laminated composites. For this, the results of a composite system based on a new thermoplastic Elium® 150 resin were compared to a traditional epoxy resin result. Both composites were fabricated via VARTM using a 0/90° plain weave carbon fiber fabric. For the non‐conditioned specimens, the thermoplastic composites presented 30% more tensile resistance in comparison to epoxy composites. For conditioned specimens, this difference was 14%. These results were related to plasticization, which tends to favor the polymer softening providing a greater matrix plastic deformation, promoting a ductile fracture of the composite. On the other hand, the in‐plane shear properties were 30% higher for the thermosetting laminates for both conditions. In this case, moisture may have favored the formation of surface cracks and weakened the fiber/matrix interfacial adhesion. Additional analysis based on design of experiments has shown that the Elium® 150 resin significantly affects all responses and presented in fact a better behavior in comparison to Epoxy resin. While the conditioning effects have featured a statistically noticeable contribution to the tensile strength, the presence of the moisture did not provide a significant enhancement to the in‐plane shear strength. Besides that, the unknown fractographic aspects of the fracture surfaces of both composites were used as a complementary tool for the mechanical characterization. POLYM. ENG. SCI., 59:2185–2194, 2019. © 2019 Society of Plastics Engineers  相似文献   

12.
An innovative manufacturing process for continuous fiber composites with the polymeric matrix made up of polypropylene and epoxy resin, as a model reactive low molecular weight component, was developed; variable process parameters give rise to different morphologies of matrix components surrounding the woven fabric reinforcement. Furthermore, the combination of both thermoplastic and thermosetting polymers permitted intimate fibers impregnation, typical of thermosetting matrix composites, with short process cycle time, which usually occurs in manufacturing process of thermoplastic matrix composites. Polypropylene (PP) films, glass fibers fabric, and epoxy resin film were used to produce flat composite through film‐stacking technique. The preparation process focused on control of both epoxy resin cure process and polypropylene melting. The process was able to induce the two matrix components to form either a planar (sandwich‐like) structure or a three‐dimensional (3D) network by means of controlling the process parameters such as pressure and heating rate. The strong enhancement of the mechanical properties (Young's modulus and tensile strength of the composites with the 3D structure were almost twice as high of those of the composites with sandwich‐like matrix structure) was due to the different microstructures produced by the interplanar flow of the thermoplastic polymer. POLYM. COMPOS., 31:1762–1769, 2010. © 2010 Society of Plastics Engineers.  相似文献   

13.
将竹纤维加入到环氧树脂中以形成增强环氧复合材料,研究了竹纤维竹粉和纳米二氧化硅(SiO2)对环氧树脂的力学性能和耐溶剂浸蚀性能的影响。竹纤维含量为15%时,竹纤维/环氧树脂的冲击强度比纯环氧树脂提高50%。纳米SiO2能同时增强和增韧竹纤维/环氧树脂,并提高其耐溶剂浸蚀性能,纳米SiO2含量为4%时,纳米SiO2/竹纤维/环氧树脂三元复合材料的冲击和拉伸强度分别比未添加纳米SiO2的竹纤维/环氧树脂提高40%和30%。当纳米SiO2/竹纤维/环氧树脂的质量比为4/15/85时,三元复合材料的综合性能较好。  相似文献   

14.
The fiber–matrix interfacial shear strength (IFSS) of biobased epoxy composites reinforced with basalt fiber was investigated by the fragmentation method. Basalt fibers were modified with four different silanes, (3‐aminopropyl)trimethoxysilane, [3‐(2‐aminoethylamino)propyl]‐trimethoxysilane, trimethoxy[2‐(7‐oxabicyclo[4.1.0]hept‐3‐yl)ethyl]silane and (3‐glycidyloxypropyl)trimethoxysilane to improve the adhesion between the basalt fiber and the resin. The analysis of the fiber tensile strength results was performed in terms of statistical parameters. The tensile strength of silane‐treated basalt fiber is higher than the tensile strength of the untreated basalt fiber; this behavior may be due to flaw healing effect on the defected fiber surfaces. The IFSS results on the composites confirm that the interaction between the fiber modified with coupling agents and the bio‐based epoxy resin was much stronger than that with the untreated basalt fiber. POLYM. COMPOS., 36:1205–1212, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
李成卓  宋乐 《合成纤维》2019,48(4):44-46
用3D编织方法及2.5D编织方法制备出碳纤维增强环氧树脂基复合材料,并采用扫描电镜、硬度计、电阻测量仪进行表征。研究发现:随着复合材料编织密度的增加,复合材料的硬度、电导率变大,抗电弧烧蚀性能也随之变好,即运用3D编织的方法制备碳纤维增强环氧树脂基复合材料的抗电弧烧蚀性能比2.5D编织的复合材料的性能更加优良。  相似文献   

16.
The cure characteristics and mechanical properties of short‐nylon‐fiber‐reinforced acrylonitrile–butadiene rubber composites with and without an epoxy resin as a bonding agent were studied. The epoxy resin was a good interfacial‐bonding agent for this composite system. The minimum torque showed a marginal increase with the resin concentration. The maximum–minimum torque showed only a marginal change with the resin. The scorch time decreased with the fiber concentration and resin content. The tensile strength and abrasion resistance were improved and the tear resistance and resilience were reduced with the resin concentration. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 532–539, 2006  相似文献   

17.
为了探究树脂基体对相同铺层方式下碳纤维/玻璃纤维层间混杂复合材料(碳/玻体积混杂比为1.86/1)干态、湿态(100℃水煮2 h)弯曲特性的影响,首先对环氧树脂和乙烯基树脂浇铸体试样分别开展了耐水性加速老化试验,并对两种树脂浇铸体试样在每个老化试验周期下分别开展剩余弯曲特性试验;然后对碳/玻层间混杂复合材料开展干、湿态弯曲试验。结果表明,无论是在常规试验(未经过老化)还是在各个老化试验周期,两种树脂浇铸体试样弯曲应力–位移曲线变化规律基本一致,但总体而言,环氧树脂浇铸体试样常规弯曲强度和各个阶段老化后弯曲强度均优于乙烯基树脂浇铸体试样;相同试验状态下,两种树脂基混杂复合材料试样湿态弯曲强度和弯曲弹性模量均较干态试样产生不同程度的降低,但环氧树脂基混杂复合材料试样在干、湿态环境下的弯曲性能均优于乙烯基树脂基混杂复合材料试样。  相似文献   

18.
The changes in interfacial fracture energy of three kinds of commercially sized carbon fiber (CF)/epoxy resin composites in the range from ambient temperature to 130°C were investigated using the single‐fiber fragmentation test to evaluate the heat resistance of the interphase. The effects of CF sizing on the interfacial bonding property were studied using desized CF/epoxy resin composites. Thermogravimetric analysis and differential scanning calorimetry of the combination of sizing and matrix were employed to investigate the role of sizing on the variations in the fiber/matrix interfacial property under elevated temperature. The interfacial fracture energy values of all the studied CF composites were found to decrease quickly during the initial stage of temperature rise and drop gradually at higher temperature. At elevated temperature, the desized CF composites had higher heat resistance than the corresponding sized fiber composites. The differences in the interfacial heat resistance among the three kinds of CF composites and the difference in the interfacial thermal stability between the sized and the desized fiber composites were related to different glass transition temperatures of the interphases. The interaction between sizing and the matrix and the chain motion of the crosslink structure of the interphase has been suggested to determine the interfacial heat resistance. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

19.
Because of their high‐specific stiffness, carbon‐filled epoxy composites can be used in structural components in fixed‐wing aircraft. Graphene nanoplatelets (GNPs) are short stacks of individual layers of graphite that are a newly developed, lower cost material that often increases the composite tensile modulus. In this work, researchers fabricated neat epoxy (EPON 862 with Curing Agent W) and 1–6 wt % GNP in epoxy composites. The cure cycle used for this aerospace epoxy resin was 2 h at 121°C followed by 2 h at 177°C. These materials were tested for tensile properties using typical macroscopic measurements. Nanoindentation was also used to determine modulus and creep compliance. These macroscopic results showed that the tensile modulus increased from 2.72 GPa for the neat epoxy to 3.36 GPa for 6 wt % (3.7 vol %) GNP in epoxy composite. The modulus results from nanoindentation followed this same trend. For loadings from 10 to 45 mN, the creep compliance for the neat epoxy and GNP/epoxy composites was similar. The GNP aspect ratio in the composite samples was confirmed to be similar to that of the as‐received material by using the percolation threshold measured from electrical resistivity measurements. Using this GNP aspect ratio, the two‐dimensional randomly oriented filler Halpin–Tsai model adjusted for platelet filler shape predicts the tensile modulus well for the GNP/epoxy composites. Per the authors' knowledge, mechanical properties and modeling for this GNP/epoxy system have never been reported in the open literature. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
This study concentrated on the thermal aging mechanism and lifetime of a carbon fiber laminated epoxy composite. Samples of the laminated composite and the neat resin (as a contrast) were exposed in air circulating ovens set at 90, 120, and 150°C for various periods of time up to 13 days. The flexural properties combining with FTIR, weight loss, DSC, SEM, and surface morphology analyses were performed on the unaged and aged samples. The flexural strength of the composite deteriorated by a factor of 3 as a result of weight loss, microcrack formation, and chain scissions. The two‐way ANOVA results indicated that the aging time had significant effect on the flexural strength of the composite and the aging temperature had no significant effect on it. Two statistical models were established to predict the residual flexural strength and lifetime of this composite. POLYM. COMPOS., 35:975–984, 2014. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号