首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
焦化柴油氧化脱硫的工艺研究   总被引:2,自引:2,他引:2  
以双氧水作氧化剂,甲醇作萃取剂,采用氧化反应与溶剂萃取相结合的方法对焦化柴油进行了氧化脱硫研究。通过单因素实验考察了氧化剂质量、反应时间、反应温度、催化剂的选择、催化剂的质量等对焦化柴油脱硫率的影响。结果表明,最适宜的氧化脱硫条件为:甲酸作催化剂,反应温度60℃、反应时间60min、剂油体积比为0.1,V(氧化剂):V(催化剂)为1.0。萃取试验条件为:在室温条件下,V(萃取剂):V(柴油)为1.0,静置时间20min。精制后柴油回收率达93.0%,柴油中硫的质量分数可降至350μg/g以下。  相似文献   

2.
超声辅助作用柴油深度氧化脱硫的影响因素   总被引:1,自引:1,他引:0  
催化氧化脱硫是降低柴油硫含量的非加氢脱硫工艺,在催化氧化溶剂抽提的基础上,增加超声波为反应提供能量。采用H2O2-甲酸作为氧化剂将辽河直馏柴油中的硫化物氧化成相应的砜,考察了氧化反应时间、温度、剂油体积比对脱硫效果的影响。实验结果表明,在超声频率为28 kHz,超声功率为200 W,H2O2和甲酸体积比为1∶1,萃取剂为N,N-二甲基甲酰胺(DMF),一次萃取10 min,萃取剂与油体积比为1∶2的条件下,反应氧化剂与油的体积比为1∶10,温度为50 ℃,氧化反应时间为10 min为较适宜的条件,其脱硫率达到87.8%。  相似文献   

3.
烷基咪唑氯酸盐离子液体的萃取脱硫研究   总被引:1,自引:0,他引:1  
实验合成了烷基碳链长度不同的烷基咪唑氯酸盐离子液体,分别考察了不同条件下离子液体对模拟油品和实际油品的脱硫效果。结果表明,在60℃下,反应时间为90min,[C7mim]ClO3离子液体作为萃取剂,VIL/VOil=5∶1时,对初始硫质量分数为1 160μg/g的模拟油品一次萃取脱硫率可达82.15%,初始硫质量分数为117μg/g的催化裂化汽油一次脱硫率为56.09%,初始硫质量分数为1 974μg/g的催化裂化柴油一次脱硫率为53.01%。反应结束后,通过简单的倾倒即可将油样和离子液体分离,重复使用5次,催化活性不降低。  相似文献   

4.
采用氧化⁃萃取法对减黏裂化柴油进行脱硫研究。使用O3为氧化剂,甲酸为催化剂,并用极性有机溶剂萃取分离柴油中含硫化合物氧化反应生成的亚砜、砜类等极性氧化物。考察了反应体系中氧化时间、氧化温度、萃取剂油体积比以及甲酸质量分数对柴油脱硫率的影响,并确定了最佳工艺条件。结果表明,在氧化⁃萃取工艺条件下,减黏裂化柴油的硫质量分数由4 980 μg/g降低至490 μg/g,脱硫率为90%。通过对减黏裂化柴油氧化前后的性质对比可知,氧化⁃萃取法可以改善减黏裂化柴油的色度和酸值等性能。  相似文献   

5.
直馏柴油催化氧化脱硫工艺中试研究(Ⅰ)   总被引:2,自引:0,他引:2  
针对柴油加氢脱硫技术设备投资和操作费用高,柴油H2O2氧化脱硫技术又存在氧化剂价格高、柴油收率低和有含硫污水排放等技术经济问题,开发了一种新型直馏柴油催化氧化脱硫方法,在此为其中试试验研究.直馏柴油催化氧化脱硫中试装置由催化氧化反应、催化剂再生回收、萃取脱硫与萃取剂回收等四个单元组成;反应器为静态混合反应器;在建立的中试装置上对直馏柴油催化氧化脱硫操作条件进行了优选实验:在表观停留时间3~5 min、反应温度60℃、反应物料循环量1 000 L/h、氧化催化剂/柴油体积比为0.24和柴油/萃取剂体积比为2.5的最佳实验操作条件下,成品柴油的硫含量从2 273 μg/g降到106 μg/g,柴油硫含量符合欧洲Ⅱ类柴油标准(≤300 μg/g),脱硫率达到95.34%,柴油收率为97.23%.  相似文献   

6.
氧化-萃取耦合模拟油品深度脱硫研究   总被引:2,自引:0,他引:2  
以分别溶有苯并噻吩(BT)和二苯并噻吩(DBT)的正辛烷溶液为模拟油品(硫含量均为1 540μg/g),以WO3/ZrO2固体超强酸为催化剂,H2O2为氧化剂,N,N-二甲基甲酰胺(DMF)为萃取溶剂,考察氧化-萃取耦合工艺参数对BT和DBT脱除率的影响,确定模拟油品氧化-萃取耦合脱硫的最佳工艺条件,并探讨氧化-萃取耦合脱硫机理。结果表明,在氧化-萃取耦合脱硫优化条件下,即耦合脱硫温度60℃,耦合脱硫时间90 min,氧化剂用量V(油)∶V(H2O2)=33.3∶1,催化剂用量0.02 g/mL油,萃取溶剂用量V(溶剂)∶V(油)=1∶1,此时BT和DBT脱除率分别达到92.40%和97.46%。  相似文献   

7.
用H2O2-有机酸氧化脱除柴油中的硫化物   总被引:17,自引:5,他引:12  
通过氧化反应与溶剂萃取分离相结合的方法对辽河直馏柴油氧化脱硫。双氧水与甲酸作为氧化剂反应生成的过氧酸,可以把柴油中的含硫化合物有选择性地氧化成相应的具有很强极性的砜。根据相似相溶原理,使用极性溶剂N,N-二甲基甲酰胺(DMF)将这些砜从柴油中脱除,从而降低油品中的硫含量。考察了反应时间、氧化温度、剂油体积比、超声波等反应条件对脱硫率的影响。结合生产实际,确定了实验室最佳操作条件:反应时间为60min;反应温度为70℃;剂油体积比为1∶10;超声波作用利于氧化脱硫。结果表明,在最佳实验条件下,脱硫率可达67.5%,基本满足国家标准的要求。  相似文献   

8.
NaY分子筛负载型离子液体在催化裂化汽油脱硫中的应用   总被引:2,自引:0,他引:2  
采用物理浸渍法将[C5mim]HSO4(1-戊基-3-甲基咪唑硫酸氢盐离子液体)负载在分子筛表面,得到分子筛负载型离子液体。采用萃取氧化法,考察了负载型离子液体对催化裂化汽油的脱硫效果。结果表明,分子筛孔道大小对脱硫效果有一定的影响。以NaY分子筛为负载剂,质量分数为35%的H2O2为氧化剂,考察了氧化剂加入体积、萃取时间、剂油体积比等不同条件对催化裂化汽油的脱硫效果。确定了最佳脱硫实验条件为10g负载型咪唑硫酸氢根离子液体,100mL FCC汽油,1mL H2O2,40℃下反应60min后对汽油有较高的脱硫率,一次脱硫率可达94%,初始含硫质量分数为200μg/g的汽油经一次脱硫后含硫质量分数可降至10μg/g以下。反应结束后,通过简单的倾倒使负载型离子液体与汽油分离,负载型离子液体通过回收后可重复使用。  相似文献   

9.
焦化汽油催化氧化脱硫的工艺研究   总被引:1,自引:1,他引:0  
以过氧化氢、甲酸为氧化剂,磷钼酸季铵盐为催化剂,糠醛为萃取剂,通过催化氧化和萃取结合的方 法进行了焦化汽油脱硫实验。考察了过氧化氢体积、催化剂质量、萃取剂体积、反应时间和反应温度对汽油脱硫率 的影响。通过优化工艺条件提高了焦化汽油催化氧化脱硫的能力,结合生产实际得出焦化汽油脱硫的最佳工艺条 件。最佳工艺条件为:反应时间60min,反应温度70℃,萃取剂体积为50mL,氧化剂体积为2.5mL,催化剂质量为 0.4g。  相似文献   

10.
直馏柴油液-液催化氧化脱硫研究   总被引:11,自引:3,他引:11  
针对柴油加氢脱硫技术设备投资和操作费用高,柴油H2O2氧化脱硫技术又存在氧化剂价格高、柴油收率低和有含硫污水排放等技术经济问题,开发了一种新型直馏柴油催化氧化脱硫方法.采用液相TS-2催化剂和空气氧化剂,在常压低温下对直馏柴油进行催化氧化,辅以EA-1复合萃取剂萃取和白土吸附脱除氧化柴油中硫化物.实验结果表明,在60℃、0.1 MPa、反应时间5 min、催化剂和柴油体积比0.1条件下可将柴油硫含量从1 658μg·g-1降至133μg·g-1,柴油收率达到97.5%,脱硫柴油硫含量符合世界燃料规范Ⅱ类柴油标准.与现有柴油脱硫方法相比较,本文方法具有投资和操作费用低、操作条件缓和、柴油收率高和无"三废"排放的优点.  相似文献   

11.
硫酸氢盐离子液体萃取氧化脱硫研究   总被引:1,自引:0,他引:1  
合成了一系列烷基碳链长度不同的1-烷基-3-甲基咪唑硫酸氢盐离子液体,以质量分数为35%的H2O2为氧化剂,考察了萃取时间、剂油体积比、温度等不同条件对模拟油品的脱硫效果,确定了最佳脱硫实验条件;在最佳实验条件下,考察反应体系对FCC汽油、柴油的脱硫效果。结果表明,[C3mim]HSO4离子液体的脱硫效果最好。在V([C3mim]HSO4)/V(H2O2)/V(模型油)-1:1:30,60℃的条件下反应90min,对模拟油品及实际油品均有较高的脱硫率,对模拟油品一次脱硫率为88.38%,对抚顺石化公司石油二厂的FCC柴油的一次脱硫率在80%以上,FCC汽油经一次脱硫后,硫的质量分数下降至10μg/g以下,显示了很高的工业应用前景。  相似文献   

12.
磷钼酸季铵盐催化柴油氧化脱硫研究   总被引:1,自引:0,他引:1  
以十八烷基三甲基磷钼酸铵作催化剂、H2O2作氧化剂,对模型油和直馏柴油进行了氧化脱硫研究。结果表明,相同反应条件下,以磷钼酸季铵盐作催化荆时,二苯并噻吩(DBT)和苯并噻吩(BT)的脱除率比磷钼酸作催化剂分别提高了5.3倍和2.4倍;在70℃下反应2.5h,DBT、BT的脱除率分别达到100%和40.5%;动力学研究表明,DBT、BT的催化氧化反应皆符合表观一级动力学规律,其活化能分别为22.5kJ/mol和62.4kJ/mol;各反应条件对直馏柴油脱硫率的影响大小顺序为:催化剂用量〉反应时间〉氧化剂用量〉反应温度;在m(催化剂)/m(柴油)=1.8%、V(H2O2)/V(柴油)-2.5%、反应温度70℃、反应时间3h条件下,柴油的脱硫率达88.7%,收得率不低于99%。  相似文献   

13.
将苯并噻吩(BT)和二苯并噻吩(DBT)分别溶于正辛烷配成模型油,以H2O2为氧化剂,研究普通加热和微波辐射加热下磷钼酸催化模型油和直馏柴油的氧化脱硫效果。分析了催化剂用量、H2O2初始浓度、反应温度和反应时间等对DBT、BT脱除率的影响,分析了不同萃取条件下的柴油脱硫率和回收率。结果表明,微波辐射加热下,DBT、BT的脱除率比普通加热分别提高了7.7倍和3.7倍;在70℃和400W微波功率下,DBT、BT的脱除率分别为95.4%和62.3%;催化剂用量、H20。初始浓度、反应温度和反应时间等对DBT、BT的氧化脱除率均有影响;v(萃取剂)/v(柴油)为1/4时,采用DMF萃取1次,柴油的脱硫率为61.8%,回收率为98.4%,萃取次数增加,柴油脱硫率提高,而回收率明显下降。  相似文献   

14.
随着环境法的日益完善,燃料油的低硫化成了亟待解决的问题.为达到深度脱除油品中硫化物的目的,提出将离子液体应用于萃取一催化氧化脱除油品中噻吩类硫化物.合成了三种酸性的离子液体1-甲基-3-乙基咪唑硫酸氢盐([Emim]HSO4)、1-甲基-3-丁基咪唑硫酸氢盐([-Bmim]HSO4)、1-甲基-3-辛基咪唑硫酸氢盐([-Omim]HSO。)分别用作萃取剂和催化剂,30%H202作为氧化剂,噻吩溶于正辛烷配置成模拟油,用于脱硫实验.考察了反应温度、反应时间、双氧水的加入量等因素对脱硫效果的影响.实验结果表明,脱硫效果的顺序为:[Omim]HSO。〉[-Bmim]HSO。〉[-Emim]HSO4.同时在[-Bmim]HSO4-H2O2体系中,脱硫的最佳条件为:剂油比为1.0,反应温度85℃,反应时间4h,氧硫比为28,脱硫率可达到97.6%.利用硫酸氢盐类的离子液体脱硫可达深度脱硫的标准.  相似文献   

15.
采用溶胶-凝胶法制备改性催化剂Cr-Mo/SiO2。通过红外光谱、X射线衍射、比表面和孔隙分析等方法对Cr-Mo/SiO2进行表征,考察Cr-Mo/SiO2用量、H2O2用量、反应温度和反应时间对模型油和直馏柴油氧化脱硫效果的影响。结果表明,各反应条件对模型油氧化脱硫效果均有一定影响,二苯并噻吩较苯并噻吩更易脱除。直馏柴油氧化脱硫正交试验结果显示,各因素对脱硫率的影响大小排序为:反应温度〉H2O2用量〉Cr-Mo/SiO2用量〉反应时间。最佳反应条件下,可使直馏柴油硫含量由994μg/g降至128μg/g,脱硫率达87.11%,油品回收率不低于98%。  相似文献   

16.
采用超声氧化法脱除柴油中硫化物,降低了柴油的硫含量。实验考察了氧化温度、氧化时间、氧化剂体积分数、催化剂体积分数等条件对柴油脱硫效果的影响。结果表明,选用甲酸与硫酸混合物作为催化剂,催化剂体积分数为2%(催化剂中甲酸与硫酸体积比为3∶2)、氧化剂体积分数为9%、反应温度为70 ℃、反应时间为60min时,采用超声氧化法脱除重油催化裂化柴油中的硫化物,再经N,N-二甲基甲酰胺(DMF)萃取氧化,柴油脱硫率达到83%,十六烷值有所升高,提高了柴油的质量。  相似文献   

17.
微波辐射磷钼酸铈盐催化柴油氧化脱硫研究   总被引:1,自引:0,他引:1  
研究微波辐射下磷钼酸铈盐催化模型油和直馏柴油的氧化脱硫反应,考察不同萃取条件对柴油的脱硫率和收率的影响。结果表明,相同反应条件下,相对于普通加热,微波辐射加热时二苯并噻吩(DBT)、苯并噻吩(BT)的脱除率分别提高了4.2倍和3.8倍;在70℃和400 W微波功率下加热2 h,DBT、BT的脱除率分别为95.6%和74.8%;对m(催化剂)/m(柴油)为7.1 mg/g、H2O2初始浓度为0.44 mol/L的柴油,经70℃和4 0 0 W微波功率加热2 h,再在V(萃取剂)/V(柴油)为1/4的条件下用DMF萃取1次,柴油脱硫率为69.6%,收率为97.5%;萃取次数增加,柴油脱硫率提高,但收率明显下降。  相似文献   

18.
在没有任何有机溶剂和卤素的条件下,以质量分数30%的H2O2为氧化剂,Na2WO4·2H2O为催化剂,在酸性离子液体[(CH2)4SO3HMIm]TSO中,将柴油中的噻吩硫氧化为矾类物质,并通过离子液体将其萃取,同时考察了反应温度、反应时间和离子液体用量等因素对氧化脱硫反应的影响,得出最佳反应条件:3mL油样(含硫质量分数为500μg/g),n(离子液体)/n(Na2WO4·2H2O)=40:1,0.7mL双氧水,333K,2h,脱硫率为97.4%。反应结束后,通过简单的倾倒将油样和催化剂分离,重复使用4次,其催化活性基本不变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号