首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinoic acid (RA) is an important mediator of cell differentiation. It stimulates hCG secretion by JEG-3 choriocarcinoma cells in vitro after a time lag. The first aim of this study was to characterize which types of retinoid receptors (RARs and RXRs) are present in JEG-3 cells. Using Western blot analysis and immunocytochemistry with specific antibodies as well as Northern blot analysis, we found that JEG-3 cells expressed RAR alpha and RXR alpha, the latter being the predominant receptor. We then analyzed the action on cell proliferation and hCG secretion of the physiological retinoids all-trans RA (RA) and 9 cis RA as well as synthetic retinoids with specific affinity for RAR alpha and RXR alpha. All these retinoids were potent inhibitors of cell growth, maximal inhibition (72 +/- 2%) being observed after 4 days of treatment with Ro 25, a RXR alpha specific ligand. Within 24 h, 9 cis RA and Ro 25 stimulated hCG secretion, and maximal stimulation (1,472 +/- 10%) occurred at 48 h with the RXR alpha-specific ligand. The RAR alpha-specific ligand also stimulated hCG secretion but to a lower extend and after a delay of 48 h. These results suggest a predominant role of RXR alpha in mediating the biological effects of retinoids on JEG-3 cells and the possible induction by RA itself of the metabolic pathway leading to 9 cis RA.  相似文献   

2.
Retinoic acid (RA) and its natural and synthetic analogs, the retinoids, regulate many biological processes, including development, differentiation, cell growth, morphogenesis, metabolism and homeostasis. Retinoid effects are mediated by specific nuclear receptors, the RARs and RXRs. Because of their ability to control cell growth and induce differentiation, retinoids are being examined for the prevention and treatment of several cancers. The majority of retinoids so far analyzed and available inhibit primarily cell proliferation and tumor progression but cannot eliminate cancer cells. In addition, the beneficial effects of the natural retinoids are undermined by undesirable side effects, possibly due to indiscriminate activation of all retinoid receptor subtypes and response pathways. Here, we show that a synthetic retinoid, CD-271, that activates selectively the RAR gamma subtype in a given context, shows increased anti-proliferative activity against certain carcinoma cells over all-trans-retinoic acid (tRA). CD-271 exhibits enhanced activity against DU-145 prostate adenocarcinoma cells through apoptosis-inducing activity, while tRA does not. The selective anti-cancer cell action appears to be receptor-mediated as an RAR antagonist reverses the inhibition. This profile was not seen with other selective retinoids, such as RAR alpha-selective agonists, anti-AP-1 compounds and a non-apoptosis inducing RAR gamma agonist. Our data point to a specific role for RAR gamma in controlling the growth of the prostate, consistent with previous RAR gamma gene knockout data. The identified retinoid represents a new class of compounds with potential for the treatment of prostate cancer.  相似文献   

3.
4.
5.
We wished to determine the effect of altering the levels or functional activity of retinoid receptors, in particular retinoic acid receptor-alpha (RAR-alpha) and retinoid X receptor-alpha (RXR-alpha) on the growth sensitivity of ovarian tumor cells to all-trans-retinoic acid (all-trans-RA). We found that CA-OV3 cells could be made resistant to all-trans-RA growth inhibition by overexpressing RAR-beta(R269Q), an efficient dominant negative mutant which inhibits the function of all RAR subtypes. Antisense technology was then used to prepare stable transfectants of the retinoid-sensitive ovarian carcinoma cell line CA-OV3 in which expression of RAR-alpha, RXR-alpha, or both RAR-alpha and RXR-alpha was reduced. The effect of all-trans-RA on ovarian tumor cell growth was determined by MTT assay, autoradiographic analysis of DNA synthesis, and anchorage-independent colony formation in soft agar. Our results show that cell lines expressing reduced levels of either RAR-alpha alone or RXR-alpha alone exhibited a small decrease in sensitivity to growth inhibition by all-trans-RA. However, maximum RA resistance was obtained in cell lines in which the levels of both RAR-alpha and RXR-alpha were reduced. These results demonstrate the importance of both retinoid nuclear receptors and retinoid-X receptors in general, and RAR-alpha and RXR-alpha in particular, as mediators of ovarian carcinoma cell growth inhibition by retinoids.  相似文献   

6.
Two families of nuclear receptors for retinoic acid (RA) have been characterized. Members of the RAR family (types alpha, beta and gamma and their isoforms alpha 1, alpha 2, beta 1 to beta 4, and gamma 1 and gamma 2) are activated by most physiologically occurring retinoids (all-trans RA, 9-cis RA, 4oxo RA and 3,4 dihyroRA). In contrast, members of the RXR family (types alpha, beta and gamma and their isoforms) are activated by 9cis-RA only. In addition to the multiplicity of receptors, the complexity of retinoid signalling is further increased by the fact that, at least in vitro, RARs bind to their cognate response elements as heterodimers with RXRs. Moreover, RXRs can also bind, in vitro, to some DNA elements as homodimers, and are heterodimeric partners for other nuclear receptors, including TRs, VDR, PPARs and a number of orphan nuclear receptors. To evaluate the functions of the different RARs and RXRs types and isoforms, we have generated null mutant mice by targeted gene disruption in ES cells. As to the functions of RARs, we found that RAR alpha 1 and RAR gamma 2 null mutant mice are apparently normal. Mice deficient in RAR alpha or RAR gamma (i.e., all alpha or gamma isoforms disrupted) show aspects of the post-natal vitamin A deficiency (VAD) syndrome which can be cured or prevented by RA, including post-natal lethality, poor weight gain and male sterility. RAR beta 2 (and RAR beta) null mutants display a retrolenticular membrane which represents the most frequent defect of the fetal VAD syndrome. That these abnormalities were restricted to a small subset of the tissues normally expressing these receptors suggested that some degree of functional redundancy should exist in the RAR family. To test this hypothesis we then generated RAR double null mutants. RAR alpha beta, RAR alpha gamma and RAR beta gamma compound mutants exhibit all the malformations of the fetal VAD syndrome, thus demonstrating that RA is the vitamin A derivative which plays a crucial role at many different stages and in different structures during organogenesis. Interestingly, almost all the structures derived from mesenchymal neural crests cells (NCC) are affected in RAR compound mutants. As to the functions of RXRs, RXR gamma null mutants are viable, fertile and morphologically normal. In contrast, RXR alpha null fetuses display a thin ventricular wall and die in utero from cardiac failure. A myocardial hypoplasia has also been observed in some RAR compound mutants as well as in VAD fetuses. Thus, RXR alpha seems to act as an inhibitor of ventricular cardiocyte differentiation and/or as a positive regulator of their proliferation, and these functions might involve heterodimerization with RARs and activation by RA. RXR beta null mutants are viable but the males are sterile, most probably because of an abnormal lipid metabolism in the Sertoli cells. New abnormalities, absent in RXR alpha mutants, are generated in RXR alpha/RAR (alpha, beta or gamma) compound mutants. All these abnormalities are also seen in RAR double mutants as well as in VAD fetuses. In contrast, such manifestations of synergism are not observed between the RXR beta or RXR gamma and the RAR (alpha, beta or gamma) null mutations. These data strongly support the conclusion that RXR alpha/RAR heterodimers represent the main functional units of the RA signalling pathway during embryonic development. Moreover, since RXR gamma-/-/RXR beta-/-/RXR alpha +/-mutants are viable, a single allele of RXR alpha can perform most of the developmental RXR functions.  相似文献   

7.
8.
Here we report that administration of retinoids can alter the outcome of an acute murine cytomegalovirus (MCMV) infection. We show that a crucial viral control element, the major immediate-early enhancer, can be activated by retinoic acid (RA) via multiple RA-responsive elements (DR2) that bind retinoid X receptor-retinoic acid receptor (RAR) heterodimers with apparent dissociation constants ranging from 15 to 33 nM. Viral growth is dramatically increased upon RA treatment of infected tissue culture cells. Using synthetic retinoid receptor-specific agonists and antagonists, we provide evidence that RAR activation in cells is required for mediating the response of MCMV to RA. Oral administration of RA to infected immunocompetent mice selectively exacerbates an infection by MCMV, while cotreatment with an RAR antagonist protects against the adverse effects of RA on MCMV infection. In conclusion, these chemical genetic experiments provide evidence that an RAR-mediated pathway can modulate in vitro and in vivo infections by MCMV.  相似文献   

9.
Retinoic acid (RA) activated the extracellular signal-regulated kinase (ERK) 2 mitogen-activated protein kinase (MAPK) of HL-60 human myeloblastic leukemia cells before causing myeloid differentiation and cell cycle arrest associated with hypophosphorylation of the retinoblastoma (RB) tumor suppressor protein. ERK2 activation by mitogen-activated protein/ERK kinase (MEK) was necessary for RA-induced differentiation in studies using PD98059 to block MEK phosphorylation. G0 growth arrest and RB tumor suppressor protein hypophosphorylation (which is typically associated with induced differentiation and G0 arrest), two putatively RB-regulated processes, also depended on ERK2 activation by MEK. Activation of ERK2 by RA occurred within hours and persisted until the onset of RB hypophosphorylation, differentiation, and arrest. ERK2 activation was probably needed early, because delaying the addition of PD98059 relative to that of RA restored most of the RA-induced cellular response. In contrast to RA (which activates RA receptors (RARs) and retinoid X receptors in HL-60 cells with its metabolite retinoids), a retinoid that selectively binds RAR-gamma, which is not expressed in HL-60 cells, was relatively ineffective in causing ERK2 activation. This is consistent with the need for a nuclear retinoid receptor function in RA-induced ERK2 activation. RA reduced the amount of unphosphorylated RAR-alpha, whose activation is necessary for RA-induced differentiation and arrest. This shifted the ratio of phosphorylated:unphosphorylated RAR-alpha to predominantly the phosphorylated form. Unlike other steroid thyroid hormone receptors susceptible to phosphorylation and activation by MAPKs, RAR-alpha was not phosphorylated by the activated ERK2 MAPK. The results thus show that RA augments MEK-dependent ERK2 activation that is needed for subsequent RB hypophosphorylation, cell differentiation, and G0 arrest. The process seems to be nuclear receptor dependent and an early seminal component of RA signaling causing differentiation and growth arrest.  相似文献   

10.
Retinoic acid (RA) is a physiological agent that has a wide range of biological activity and appears to regulate developmental programs of vertebrates. However, little is known about the molecular basis of its metabolism. Here we have identified a novel cytochrome P450 (P450RA) that specifically metabolizes RA. In vitro, P450RA converts all-trans RA into 5,8-epoxy all-trans RA. P450RA metabolizes other biologically active RAs such as 9-cis RA and 13-cis RA, but fails to metabolize their precursors, retinol and retinal. Overexpression of P450RA in cell culture renders the cells hyposensitive to all-trans RA. These functional tests in vitro and in vivo indicate that P450RA inactivates RA. The P450RA gene is not expressed uniformly but in a stage- and region-specific fashion during mouse development. The major expression domains in developing embryos include the posterior neural plate and neural crest cells for cranial ganglia. The expression of P450RA, however, is not necessarily inducible by excess RA. These results suggest that P450RA regulates the intracellular level of RA and may be involved in setting up the uneven distribution of active RA in mammalian embryos.  相似文献   

11.
12.
Retinol and retinyl esters are converted with time to slowly increasing amounts of all-trans retinoic acid (RA) in cultured human keratinocytes. Exogenous RA has been shown to limit retinol oxidation and to increase retinol esterification. Because significant amounts of retinol are present in biologic systems, we examined whether RA and all-trans-retinoyl-beta-D-glucuronide (RAG) interact with retinol in exhibiting their activities on HaCaT keratinocytes maintained in a retinoid-free culture system. RA was more potent than RAG and retinol in inducing ultrastructural changes attributed to retinoids, inhibiting cell proliferation as well as enhancing keratin 19 expression. In addition, retinoids were able to induce cellular retinoic acid-binding protein II mRNA levels in the cultures, whereas early RA and late RAG activity was detected. The described biologic effects of RA and RAG were diminished by simultaneous cell exposure to retinol. HaCaT cells quickly metabolized retinol to retinyl esters and consequently to low amounts of RA. RA treatment led to an early high peak of cellular RA followed by reduction to trace amounts. Treatment with RAG resulted in constantly high cellular RAG and low RA levels. Under the combined RA and retinol treatment retinyl esters were increased and RA was reduced in HaCaT cells, whereas extracellular RA levels were similar to those obtained by RA alone. On the other hand, the combination of RAG and retinol resulted in higher extracellular RAG, similar cellular RAG, and lower cellular RA levels than those obtained by RAG alone without any change in retinyl esters. This study demonstrates that retinoid signaling by RA and RAG is attenuated by simultaneous exposure of HaCaT keratinocytes in vitro to retinol. The presence of retinol in the medium alters the rate of RA or RAG metabolism and thus cellular RA concentrations. The intensity of retinoid signal is probably dependent on cellular RA levels. The resulting "antagonism" among retinoids is consistent with the presence of an auto-regulatory mechanism in human keratinocytes offering protection against excessive accumulation of cellular RA.  相似文献   

13.
14.
15.
16.
Retinoids are important regulators of cell growth and differentiation in vitro and in vivo and they exert their biologic activities by binding to nuclear retinoic acid receptors (RARs; alpha, beta, and gamma) and retinoid X receptors (RXRs; alpha, beta, and gamma). All-trans retinoic acid (RA) induces complete remission in patients with acute promyelocytic leukemia (APL) presumably by binding directly to RAR alpha of APL cells. Leukemic blasts from APL patients initially responsive to RA can become resistant to the agent. HL-60 myeloblasts cultured with RA have developed mutations of the ligand-binding region of RAR alpha and have become resistant to RA. Furthermore, insertion of an RAR alpha with an alteration in the ligand-binding region into normal murine bone marrow cells can result in growth factor-dependent immortalization of the early hematopoietic cells. To determine if alterations of the ligand binding domain of RAR alpha might be involved in several malignant hematologic disorders, the mutational status of this region (exons 7, 8, and 9) was examined in 118 samples that included a variety of cell lines and fresh cells from patients with myelodysplastic syndromes (MDS) and acute myeloid leukemias (AML), including 20 APL patients, 5 of whom were resistant to RA and 1 who was refractory to RA at diagnosis, using polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP) analysis and DNA sequencing. In addition, 7 of the 20 APLs were studied for alterations of the other coding exons of the gene (exons 2 through 6). No mutations of RAR alpha were detected. Although the sensitivity of PCR-SSCP analysis is less than 100%, these findings suggest that alterations of RAR alpha gene are rare and therefore other mechanisms must be involved in the onset of resistance to retinoids and in the lack of differentiation in disorders of the myeloid lineage.  相似文献   

17.
Exogenous retinoic acid (RA) administered during mouse embryogenesis can alter the pattern of the axial skeleton during two developmental periods: an early window (7 to 8.5 days post-coitum; dpc) and a late window (9.5 to 11.5 dpc). Treatment during the early window results in vertebral homeotic transformations (predominantly posteriorizations) concomitant with rostral shifts in Hox gene expression, while treatment at the later window results in similar transformations without detectable alterations in Hox gene expression patterns. Mice null for retinoic acid receptor gamma (RAR gamma) exhibit axial defects, including homeosis of several vertebrae, therefore establishing a role for this receptor in normal axial specification RAR gamma null mutants are also completely resistant to RA-induced spina bifida, which occurs in wildtype embryos treated at 8.5-9.0 dpc, suggesting that this receptor specifically transduces at least a subset of the teratogenic effects of retinoids. To further investigate the role of RAR gamma in RA-induced defects during the early and late windows of retinoid-sensitive vertebral patterning, RAR gamma heterozygotes were intercrossed, pregnant females treated with vehicle or RA at 7.3, 10.5 or 11.5 dpc and full-term fetuses assessed for skeletal defects. Relative to wildtype littermates, RAR gamma null mutants treated at 7.3 dpc were markedly resistant to RA-induced embryolethality, craniofacial malformations, and neural tube defects. Furthermore, while RAR gamma null mutants were modestly resistant to certain vertebral malformations elicited by RA treatment at 7.3, they exhibited more pronounced resistance following treatment at 10.5 and 11.5 dpc. Moreover, several of the vertebral defects inherent to the RAR gamma null phenotype were abolished by RA treatment specifically at 10.5 dpc, suggesting that RAR alpha and/or RAR beta isoforms may substitute for certain RAR gamma functions, and that RAR gamma may elicit its normal effects on vertebral morphogenesis at this developmental stage.  相似文献   

18.
Treatment of serum-free grown HL60 cells with certain combined amounts of retinoic acid (9-cis or all-trans RA) and 1 alpha 25 dihydroxyvitamin D3 (D3) results in differentiation of 71-77% of cells towards either neutrophils or monocytes. Studies of the differentiation of HL60 cells in flask cultures does not reveal: (i) the extent to which selective growth of cells might have occurred; and (ii) the overall level of cell survival. This information can be obtained by monitoring the effects of differentiative agents on individual cells. Serum-free grown HL60 cells were cultured as single cells in microtitre wells in conditioned medium obtained from exponentially growing and serum-free cultures of HL60. This resulted in a cloning efficiency of 85% and HL60 cells doubled every 24 h. During a period of exponential growth < 0.5 to 2% of the cells generated died. Single HL60 cells were treated with 9-cis and all-trans RA (5 x 10(-7) M) together with a small amount of D3 (3.9 x 10(-14) M) to promote neutrophil differentiation. D3 alone (10(-7) M) and D3 (5 x 10(-9) M) in combination with 9-cis RA (10(-8) M) were used to promote monocyte differentiation. The growth kinetics of HL60 cell cultures that were differentiating to neutrophils and to monocytes were similar. Single-cell experiments have revealed that: (i) differentiating HL60 cells undergo a variable number of divisions (two to five) prior to arresting their growth; and (ii) up to 33% of the cells that are generated (by day 5) die. Seventy to eighty per cent of the cells in each of the wells had matured. These findings have important implications in regard to whether retinoids and D3 provide signals that determine the choice of maturation pathway or that merely facilitate selective survival and/or expansion of cells that have independently determined their differentiation fates.  相似文献   

19.
HL60 cells differentiate to monocytes or neutrophils in response to 1 alpha,25(OH)2-vitamin D3 (D3) and retinoids respectively. D3 and retinoid actions converge since their receptors (VDR, RAR) heterodimerise with a common partner, RXR, which also interacts with thyroid hormone (T3) receptors (T3R). HL60 cells were treated with combinations of D3 and retinoids to induce differentiation and to investigate whether increased VDR or RAR expression correlated with monocyte or neutrophil differentiation and whether altered receptor concentrations affected DNA-binding specificity. As assessed by Western blotting, VDR and RXR expression was unchanged in monocytes relative to controls but levels of RAR and T3R were reduced. In contrast, only VDR expression was reduced in neutrophils. T3 did not promote differentiation or influence its induction by D3 or retinoids and did not affect expression of any receptor. Gel mobility-shift analysis revealed that nuclear extracts from undifferentiated cells, monocytes and neutrophils interacted differently with VDRE-, RARE- and RXRE-binding sites. Monocyte nuclear protein/DNA complexes contain readily detectable VDR and RXR whereas neutrophil complexes contain RAR and RXR. Thus hormone-induced changes in receptor stoichiometry favour either VDR/RXR or RAR/RXR heterodimerisation and correlate with hormone-induced differentiation of HL60 cells to monocytes or neutrophils respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号