首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of monocyte-derived macrophages with cytokines leads to the induction of nitric oxide synthase. Much less is known about the effects of cytokines on microglia, resident brain macrophages, or on astrocytes. In this study, we compared the induction by lipopolysaccharide, interferon-gamma, and tumor necrosis factor-alpha of nitric oxide production and synthesis of tetrahydrobiopterin, the required cofactor for nitric oxide synthase, in microglia and peritoneal macrophages. Activation of microglia induced parallel increases in nitric oxide and intracellular tetrahydrobiopterin levels, although induction of the latter appears to be somewhat more sensitive to diverse stimulators. As with macrophages, inducible nitric oxide production in microglia was blocked by inhibitors of tetrahydrobiopterin biosynthesis. Interleukin-2, an important component of the neuroimmunomodulatory system, was only a weak activator of microglia by itself but potently synergized with interferon-gamma to stimulate production of both nitric oxide and tetrahydrobiopterin. Astrocytes were also activated by lipopolysaccharide and combinations of cytokines but showed a somewhat different pattern of responses than microglia. Biopterin synthesis was increased to higher levels in astrocytes than in microglia, but maximal induction of nitric oxide production required higher concentrations of cytokines than microglia and the response was much lower. These results suggest that tetrahydrobiopterin synthesis in glial cells is a potential target for therapeutic intervention in acute CNS infections whose pathology may be mediated by overproduction of nitric oxide.  相似文献   

2.
The distribution of the neuronal isoform of nitric oxide synthase (nNOS) in the spinal cord of transgenic mice expressing a mutated human copper/zinc superoxide dismutase gene was enhanced when investigated by immunocytochemistry. Immunocytochemistry showed intensely stained NOS-immunoreactive (IR) glial cells with the appearance of astrocytes in the spinal cord and brain stem of transgenic mice, but none were observed at these sites in control mice. Using antisera directed against GFAP, the specific marker for astrocyte, the glial cells were confirmed by immunocytochemistry to be astrocytes. This immunocytochemical evidence suggests that nitric oxide may mediate glutamate neurotoxicity, and this study provides the first in vivo evidence that nitric oxide may be implicated in the pathologic process of human familial amyotrophic lateral sclerosis.  相似文献   

3.
Nitric oxide (NO), a diffusible gas, is a messenger molecule that mediates vascular dilatation and neural transmission. The enzyme nitric oxide synthase (NOS) present in neurons is activated by Ca2+ influx associated with activation of glutamate receptors. Cultured cortical neurons containing NOS are selectively vulnerable to injury by kainic acid (KA). However, the relationship between NOS neurons and excitotoxicity under in vivo conditions is not entirely clear. In the present study, we examined the time course and spatial distribution of changes in NOS neurons caused by an intracortical microinjection of KA in adult rats. NADPH-diaphorase (NADPH-d) histochemistry was used as a marker for NOS and the neuronal changes were correlated with changes in glial cells and endothelial cells. We demonstrated a rapid loss of NADPH-d neurons in the lesion center and degeneration of NADPH-d neurons and nerve terminals throughout ipsilateral cortex and hippocampus; the striatal neurons appeared to be unaffected. Subsequent to cortical neuronal degeneration, new NADPH-d activity appeared in proliferative reactive astrocytes and in endothelial cells at lesion periphery, and in neuronal groups at lesion periphery, in ipsilateral entorhinal cortex and bilateral hippocampus. These findings indicate that neurons expressing NADPH-d in cerebral cortex and hippocampus are selectively vulnerable to KA toxicity in vivo. The subsequent induction of NOS in neural and non-neural cells may be regarded as an adaptive response to the kainate-induced brain lesion.  相似文献   

4.
To determine whether heme oxygenase-1 (HO-1) protein is induced by endogenous nitric oxide (NO) in rat glial cultures, we examined the effects of lipopolysaccharide (LPS), interferon-gamma (IFN-gamma), and NO donors such as S-nitroso-N-acetylpenicillamine (SNAP), in mixed glial cells and in vivo rat hippocampus. In cultured glial cells, treatment with LPS induced the expression of 130-kd inducible NO synthase (iNOS) after 6 h, and NO2- accumulation and enhancement of the protein level of 33-kd HO-1 after 12 h. In addition, treatment with SNAP induced HO-1 expression after 6 h. Although NOS inhibitors such as NG-nitro-L-arginine (NNA) and NG-methyl-L-arginine did not change LPS-induced iNOS expression, these inhibitors suppressed both NO2- accumulation and the enhancement of HO-1. Immunocytochemistry showed that treatment with LPS for 24 h induced iNOS immunoreactivity predominantly in ameboid microglia, while this treatment induced HO-1-immunoreactivity in both microglia and astrocytes. In in vivo rat hippocampus, microinjection of LPS plus IFN-gamma, or SNAP after 24 h also induced HO-1 immunoreactivity in reactive microglia and astrocytes. In addition, intraperitoneal administration of NNA inhibited HO-1 immunoreactivity induced by the microinjection of LPS plus IFN-gamma. These results suggest that endogenous NO production by iNOS in microglia causes autocrine and paracrine induction of HO-1 protein in microglia and astrocytes in vitro and in rat brain.  相似文献   

5.
We analysed the inducibility of major histocompatibility complex (MHC) class II molecules of astrocytes and microglia in organotypic hippocampus slice cultures of Lewis rats. Treatment with interferon-gamma (IFN-gamma) resulted in the induction of MHC class II molecules on microglia preferentially in the injured marginal zones of the slice culture, but only sporadically in areas containing intact neuronal architecture. In astrocytes, inducibility of MHC class II molecules was even more strictly controlled. IFN-gamma treatment induced MHC class II expression only in the slice culture zones containing degenerated neurons, and not in the presence of functional neurons. After suppression of spontaneous neuronal activity of the slice culture by the sodium channel blocker tetrodotoxin, MHC class II molecules on astrocytes could be induced by IFN-gamma in areas with intact neuronal architecture, and microglia cells exhibited a higher level of expression. These data suggest that loss of neurons could result in MHC class II inducibility of glial cells, and thus in increased immune reactivity of nervous tissue.  相似文献   

6.
Cholinergic basal forebrain neurons are the major source of cortical cholinergic innervation. The number of these neurons is regulated by the availability of nerve growth factor (NGF) during development while in adulthood their cholinergic activity is modulated by NGF. In previous studies we have shown that cholinergic immunolesions of basal forebrain neurons increase local immediate early gene expression and NGF synthesis in the regions of degeneration. In this study we identify the cellular source of c-Jun and NGF expression using dual immunolabeling of c-Jun and NGF in combination with neuronal and glial markers. We demonstrate that both c-Jun and NGF are exclusively expressed in reactive astrocytes but not in microglia or in GABAergic basal forebrain neurons. These observations support the hypothesis that reactive astrocytes synthesize neurotrophic substances in vivo in response to neuronal degeneration in the basal forebrain.  相似文献   

7.
Alterations in the expression of both the beta-amyloid precursor protein (APP) and nitric oxide synthase (NOS) might be involved in neurodegenerative conditions and/or in the neuronal response to injury. We have investigated the relationship between the increased expression of beta-amyloid precursor protein (APP) and the reactive changes in the expression of isoforms of nitric oxide synthase (NOS) in neurons and glial cells after small electrolytic lesions placed to the cerebral cortex. An increase in the expression of APP in both neurons and glial cells was detected 4 days post-operation. The inducible NOS (iNOS) was observed in macrophages or glial cells surrounding the lesion site. No major changes in constitutive NOS (cNOS) were found. APP immunoreactivity was not co-localized with either iNOS or cNOS at this survival time. At longer survival times (8 and 12 days post-lesion), a reactive increase in the expression of cNOS in cortical pyramidal neurons was seen in addition to the elevated expression of iNOS in astrocytes. The reactive expression of cNOS was confined to a subset of neurons also showing a high expression of APP. The present results suggest a relationship between reactive changes in the expression of APP and cNOS during the neuronal response to injury.  相似文献   

8.
9.
In an attempt to elucidate the pathological implications of intracellular accumulation of the amyloid precursor protein (APP) in postmitotic neurons in vivo, we transferred APP695 cDNA into rat hippocampal neurons by using a replication-defective adenovirus vector. We first improved the efficiency of adenovirus-mediated gene transfer into neurons in vivo by using hypertonic mannitol. When a beta-galactosidase-expressing recombinant adenovirus suspended in 1 M mannitol was injected into a dorsal hippocampal region, a number of neurons in remote areas were positively stained, presumably owing to increased retrograde transport of the virus. When an APP695-expressing adenovirus was injected into the same site, part of the infected neurons in the hippocampal formation underwent severe degeneration in a few days, whereas astrocytes near the injection site showed no apparent degeneration. These degenerating neurons accumulated different epitopes of APP, and beta/A4 protein (Abeta)-immunoreactive materials were undetected in the extracellular space. A small number of degenerating neurons showed nuclear DNA fragmentation. Electron microscopic examinations demonstrated that degenerating neurons had shrunken perikarya along with synaptic abnormalities. Microglial cells/macrophages were often found in close proximity to degenerating neurons, and in some cases they phagocytosed these neurons. These results suggest that intracellular accumulation of wild-type APP695 causes a specific type of neuronal degeneration in vivo in the absence of extracellular Abeta deposition.  相似文献   

10.
BACKGROUND: In the adult rat, neuron-astroglia interactions in the supraoptic nucleus (SON) are characterized by the structural and functional plasticity of astrocytes in response to several physiological and experimental conditions. This study has analyzed the plasticity of the supraoptic nucleus astrocytes in response to the age-induced changes in neuronal activity. METHODS: The study was performed in 5-, 12-, 18- and 24-month-old rats. The cytology and organization of astrocytes in the SON were examined using glial fibrillary acidic and vimentin immunocytochemistry and ultrastructural and morphometric analysis. RESULTS: No significant age-related variations in the total number of neurons and astrocytes in the SON were detected, although a few degenerating neurons were found in old rats. An age-dependent increase in GFAP immunoreactivity was observed at the ventral glial lamina, perivascularly and between neuronal perikarya. Vimentin overexpression was also detected in ventral lamina astrocytes with advancing age. At the cell nucleus level, we observed an age-associated increase in nuclear size and in the number of coiled bodies, nuclear bodies, and "cleared" nucleoplasmic areas, as well as changes in the nucleolar organization. At the cytoplasmic level, characteristic ultrastructural features in astrocytes of old rats were the hypertrophy of intermediate filament bundles and the formation of an extensive network of Golgi stacks interlinked by tubulovesicular elements. Glial filaments were often associated with the nuclear envelope and polyribosomes. CONCLUSIONS: The increased GFAP and vimentin immunoreactivity and the morphometric and cytological changes in rat SON astrocytes may reflect a sustained upregulation of cellular activity with age, resulting in hypertrophy of glial perikarya and cell processes. Several factors that are known to influence the expression of the astrocytic phenotype, such as signals produced by degenerating neurons and activated microglia, as well as variations in neuronal activity are considered possible causes of the age-associated changes in SON astrocytes.  相似文献   

11.
In Alzheimer's disease (AD), a chronic cerebral inflammatory state is thought to lead to neuronal injury. Microglia, intrinsic cerebral immune effector cells, are likely to be key in the pathophysiology of this inflammatory state. We showed that macrophage colony-stimulating factor, a microglial activator found at increased levels in the central nervous system in AD, dramatically augments beta-amyloid peptide (betaAP)-induced microglial production of interleukin-1, interleukin-6, and nitric oxide. In contrast, granulocyte macrophage colony-stimulating factor, another hematopoietic cytokine found in the AD brain, did not augment betaAP-induced microglial secretory activity. These results indicate that increased macrophage colony-stimulating factor levels in AD could magnify betaAP-induced microglial inflammatory cytokine and nitric oxide production, which in turn could intensify the cerebral inflammatory state by activating astrocytes and additional microglia, as well as directly injuring neurons.  相似文献   

12.
In cultures of purified microglial cells and astrocytes from newborn rats, the immunocytochemical localization of interleukin-1 beta (IL-1 beta) and inducible nitric oxide synthase (iNOS) using recently developed antibodies, as well as the release of IL-1 beta and nitric oxide (NO), was studied following exposure of the cells to endotoxin [lipopolysaccharide (LPS)]. In the absence of LPS, IL-1 beta- and iNOS-immunoreactive microglial cells and IL-1 beta or NO release were not observed, whereas in the presence of the endotoxin, the production of NO and IL-1 beta by microglial cells dramatically exceeded their synthesis and release by astrocytes. Interestingly, microglial cells cultured for 4-8 days in the presence of astrocytes appeared to lose their ability to produce iNOS, whereas the release of IL-1 beta remained unaltered. Moreover, endotoxin-stimulated microglial cells appeared to regain their ability to synthesize iNOS following their separation from astrocytes. These data show that microglia are primarily responsible for NO and IL-1 beta production in mixed glial cell cultures upon endotoxin stimulation. Moreover, in the presence of astrocytes the induction of iNOS, but not that of IL-1 beta in microglial cells is gradually inhibited.  相似文献   

13.
The beta-amyloid peptide 1-42 (Abeta1-42), a major component of neuritic and core plaques found in Alzheimer's disease, activates microglia to kill neurons. Selective modifications of amino acids near the N terminus of Abeta showed that residues 13-16, the HHQK domain, bind to microglial cells. This same cluster of basic amino acids is also known as a domain with high binding affinity for heparan sulfate. Both Abeta binding to microglia and Abeta induction of microglial killing of neurons were sensitive to heparitinase cleavage and to competition with heparan sulfate, suggesting membrane-associated heparan sulfate mediated plaque-microglia interactions through the HHQK domain. Importantly, small peptides containing HHQK inhibited Abeta1-42 cell binding as well as plaque induction of neurotoxicity in human microglia. In vivo experiments confirmed that the HHQK peptide reduces rat brain inflammation elicited after infusion of Abeta peptides or implantation of native plaque fragments. Strategies which exploit HHQK-like agents may offer a specific therapy to block plaque-induced microgliosis and, in this way, slow the neuronal loss and dementia of Alzheimer's disease.  相似文献   

14.
Heme oxygenase, catalyses oxidation of the heme molecule in concert with NADPH-cytochrome P450 reductase and then specifically cleaves heme into biliverdin, carbon monoxide, and iron. Biliverdin and its product, bilirubin, are known to be strong antioxidants. Kainic acid is a potent neurotoxin, and induces selective neuronal loss in the rat hippocampus. Kainic acid acts on the kainate receptors, and kainic acid neurotoxicity may be in part mediated by oxidative stress. In this study, we examined whether or not heme oxygenase was activated in kainic acid-induced neurotoxicity. After intracerebroventricular injection of kainic acid, the heme oxygenase-1 protein level was strongly enhanced, although the constitutive heme oxygenase (heme oxygenase-2) protein level was not changed. One day after treatment, the protein level of heme oxygenase-1 reached a maximum and then gradually decreased over a period of three to seven days. In the rat hippocampus, cells expressing heme oxygenase-1 in vivo were predominately microglia and only a few astrocytes. In addition, heme oxygenase-1 immunoreactivity was predominantly co-localized with major histocompatibility complex class II-, and partly co-localized with class I-immunoreactive microglia. In cultured glial cells in vitro, heme oxygenase- protein was expressed in the microglia even with the vehicle treatment, and was strongly induced in astrocytes by kainic acid treatment. These results suggest that ameboid microglia, which express both heme oxygenase-1 and major histocompatibility complex antigens, may play a key role in a delayed episode of kainic acid-induced microglial activation and neurodegeneration.  相似文献   

15.
To clarify mechanisms of neuronal death in the postischemic brain, we examined whether astrocytes exposed to hypoxia/reoxygenation exert a neurotoxic effect, using a coculture system. Neurons cocultured with astrocytes subjected to hypoxia/reoxygenation underwent apoptotic cell death, the effect enhanced by a combination of interleukin-1beta with hypoxia. The synergistic neurotoxic activity of hypoxia and interleukin-1beta was dependent on de novo expression of inducible nitric oxide synthase (iNOS) and on nitric oxide (NO) production in astrocytes. Further analysis to determine the neurotoxic mechanism revealed decreased Bcl-2 and increased Bax expression together with caspase-3 activation in cortical neurons cocultured with NO-producing astrocytes. Inhibition of NO production in astrocytes by N(G)-monomethyl-L-arginine, an inhibitor of NOS, significantly inhibited neuronal death together with changes in Bcl-2 and Bax protein levels and in caspase-3-like activity. Moreover, treatment of neurons with a bax antisense oligonucleotide inhibited the caspase-3-like activation and neuronal death induced by an NO donor, sodium nitroprusside. These data suggest that NO produced by astrocytes after hypoxic insult induces apoptotic death of neurons through mechanisms involving the caspase-3 activation after down-regulation of Bcl-2 and up-regulation of Bax protein levels.  相似文献   

16.
Neuronal apoptosis is a suspected cause of neurodegeneration in Alzheimer's disease (AD). Increased levels of amyloid beta peptide (Abeta) induce neuronal apoptosis in vitro and in vivo. The underlying molecular mechanism of Abeta neurotoxicity is not clear. The normal concentration of Abeta in cerebrospinal fluid is 4 nM. We treated human neuron primary cultures with 100 nM amyloid beta peptides Abeta(1-40) and Abeta(1-42) and the control reverse peptide Abeta(40-1). We find that although little neuronal apoptosis is induced by either peptide after 3 d of treatment, Abeta(1-42) provokes a rapid and sustained downregulation of a key anti-apoptotic protein, bcl-2, whereas it increases levels of bax, a protein known to promote cell death. In contrast, the Abeta(1-40) downregulation of bcl-2 is gradual, although the levels are equivalent to those of Abeta(1-42)-treated neurons by 72 hr of treatment. Abeta(1-40) does not upregulate bax levels. The control, reverse peptide Abeta(40-1), does not affect either bcl-2 or bax protein levels. In addition, we found that the Abeta(1-40)- and Abeta(1-42)- but not Abeta(40-1)-treated neurons had increased vulnerability to low levels of oxidative stress. Therefore, we propose that although high physiological amounts of Abeta are not sufficient to induce apoptosis, Abeta depletes the neurons of one of its anti-apoptotic mechanisms. We hypothesize that increased Abeta in individuals renders the neurons vulnerable to age-dependent stress and neurodegeneration.  相似文献   

17.
Peripheral benzodiazepine receptors (PBRs) are expressed in a variety of tissues but are normally found at low levels in the brain. Following various types of nerve injury, a reactive gliosis results that exhibits a high expression of this receptor. To further characterize the expression of PBRs following neuronal injury, we evaluated PBR expression in the facial nucleus following facial nerve axotomy (FNA). Injury to a peripheral nerve results in a complex series of metabolic and morphological changes around the injured neuron. Transections of the facial nerve results in a rapid activation of both astrocytes and microglia around axotomized motor neurons. FNA resulted in an increase in the staining for both astrocytes (glial fibrillary acidic protein) and activated microglia (OX42). There was also a reduction in synaptic contacts with the motor nucleus as evidenced by reduced staining for the synaptic marker, synaptophysin. In sections labeled with [3H]-PK11195, the subsequent autoradiograms displayed marked increases in the labeling for PBRs. This increase was observed at 5, 7 and 10 days after nerve transection. The increase was primarily in the level of expression (Bmax), with no change in the affinity of the ligand (Kd). The increase in PBR expression after FNA supports the hypothesis that PBRs can be used as a sensitive marker for CNS injury.  相似文献   

18.
19.
To examine the cellular distribution of radical scavenging enzymes in glia, in comparison to that in neurons and their behaviour during excitotoxically induced neurodegenerative processes, protein levels and the cellular localization of cytosolic and mitochondrial superoxide dismutase (Cu/Zn- and Mn-SOD) were investigated in the rat brain undergoing quinolinic acid (Quin)-induced neurodegeneration. Evidence for the specificity of the applied antibodies to detect immunocytochemically these SOD isoforms was obtained from electron microscopy and Western blotting. In control striatum Mn-SOD was clearly confined to neurons, whereas Cu/Zn-SOD was found, rather delicately, only in astrocytes. Microglia failed to stain with antibodies to both SOD isoforms. Quin application resulted in an initial formation of oxygen and nitrogen radicals as determined by the decline in the ratio of ascorbic to dehydroascorbic acid and by increased levels of nitrated proteins, an indicator for elevated peroxynitrite formation. Morphologically, massive neuronal damage was seen in parallel. Astroglia remained intact but showed initially decreased glutamine synthetase activities. The levels of Mn-SOD protein increased 2-fold 24 h after Quin injection (Western blotting) and declined only slowly over the time period considered (10 days). Cu/Zn-SOD levels increased only 1.3-fold. Immunocytochemical studies revealed that the increase in Mn-SOD is confined to neurons, whereas that of Cu/Zn-SOD was observed only in astroglial cells. Quiescent microglial cells were, as a rule, free of immunocytochemically detectable SOD, whereas in activated microglia a few Mn-SOD immunolabeled mitochondria occurred. Our results suggest a differential protective response in the Quin lesioned striatum in that Mn-SOD is upregulated in neurons and Cu/Zn-SOD in astroglia. Both SOD-isoforms are assumed to be induced to prevent oxidative and nitric oxide/peroxynitrite-mediated damage. In the border zone of the lesion core this strategy may contribute to resist the noxious stimulus.  相似文献   

20.
Reactive gliosis is a response noted after nearly every type of CNS injury and involves both activated microglia and astroglia. Although many investigators believe that reactive glia in some way regulate the survival of injured neurons, the influence of glial elements upon damaged neural tissues remains uncertain. To examine relationships between reactive glia and neurons, secretion products from both microglia and astroglia are tested for their effects upon the survival of cultured neurons. Microglia are found to secrete neurotoxic agents, while astroglia are a source of neuronotrophic factors. Similar patterns of soluble factor production are noted for astroglia-rich or microglia-rich regions of rat neocortex damaged by ischemia. These observations suggest that microglia and astroglia compete for control of neuronal survival. Importantly, microglial neurotoxins might hinder the recovery of neurologic function at sites of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号