首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Thermochemical analyses were carried out for a series of pack powder mixtures for deposition of aluminide and for co-deposition of aluminide and silicide coatings on -TiAl by the pack cementation process. Based on the results obtained, experimental studies were undertaken to identify optimum pack powder mixtures for depositing adherent and coherent aluminide and silicide coatings. Pack powder mixtures activated by 2 wt% AlCl3 was used to aluminise -TiAl at 1000°C. With proper control of pack compositions and coating conditions, an aluminide coating of TiAl3 with a coherent structure free from microcracking was deposited on the substrate surface via inward diffusion of aluminium. The results of thermochemical calculations indicated that co-deposition of Al and Si is possible with CrCl3 · 6H2O and AlCl3 activated pack powders containing elemental Al and Si as depositing sources. Experimental results obtained at 1100°C revealed that CrCl3 · 6H2O is not suitable for use as an activator for co-depositing aluminide and silicide coatings on -TiAl. It caused a significant degree of degradation instead of coating deposition to the substrate. However, adherent coatings with excellent structural integrity consisting of an outer TiSi4 layer and an inner TiAl3 layer were successfully co-deposited at 1100°C and 1000°C using pack powder mixtures activated by AlCl3. IT is suggested that such coatings were formed via a sequential deposition mechanism through inward diffusion of aluminium and silicon. Discussion is presented on the issues that need to be considered to ensure the deposition of aluminide and silicide coatings with coherent structure free from microcracking on -TiAl by the pack cementation process.  相似文献   

2.
The vapour phase compositions of a series of pack powder mixtures containing elemental Al and Hf or W powders as depositing sources and CrCl3·6H2O or AlF3or CrF3as activators were analysed in an attempt to further develop the pack cementation process to codeposit Al and Hf or W to form diffusion coatings on nickel base superalloys. The results suggested that Al could be codeposited with Hf, but not with W, from the vapour phase. Compared with both AlF3and CrF3, CrCl3·6H2O has been shown to be a more suitable activator for codepositing Al with Hf. The optimum coating temperature was identified to be in the range of 1050°C to 1150°C. Based on the thermochemical analysis, a series of coating deposition studies were undertaken, which confirmed that codeposition of Al and Hf could be achieved at a deposition temperature of 1100°C in the CrCl3·6H2O activated packs containing elemental Al and Hf powders. The coating obtained had a multilayer structure consisting of a Ni7Hf6Al16top layer and a NiAl layer underneath, followed by a diffusion zone, which revealed that the coating was formed by the outward Ni diffusion. It is suggested that the compositions suitable for codeposition of Al and Hf could be effectively identified by comparing the vapour pressures of HfCl4and HfCl3with that of AlCl in the packs activated by chloride salts. It has also been experimentally demonstrated that, although W could not be deposited from the vapour phase, a high volume of fine W particles can be entrapped into the outer NiAl coating layer formed by the outward Ni diffusion using a modified pack configuration. This leads to the formation of a composite coating layer with W particles evenly distributed in a matrix of NiAl. It is suggested that this modified pack process could be similarly applied to develop nickel aluminide coatings containing other refractory metals that may not be codeposited with Al from the vapour phase.  相似文献   

3.
Abstract

The equilibrium partial pressures of vapour species generated in halide activated pack powder mixtures at high temperatures were calculated for a series of compositions using thermochemical analysis tools. The results obtained were applied to identify suitable activators and pack compositions for codepositing Al and Si to form diffusion coatings on nickel base superalloys by the pack cementation process. The calculation results suggested that compositions of the packpowder mixtures activated by CrCl3.6H2O may be adjusted to create deposition conditions favourable for codepositing Al and Si, but, those activated byAlF3or AlCl3 may only deposit Al.A series of coating deposition experiments were also carried out at 1000 ° C and 1100 ° C and the results obtained confirmed that, with adequate control of pack compositions and deposition conditions, codeposition of Al and Si can be achieved with CrCl3.6H2O activated pack powder mixtures. A mixture of elemental Al and Si powders may be used as a depositing source instead of using Al-Si master alloy powders as conventionally recommended. The coatings could be formed either through the inward diffusions of Al and Si or through the outward diffusion of Ni together with other substrate elements such as Cr and Co, depending on the deposition temperature used. Prolonged deposition at 1100 ° C ledtothe formationofa coatingwith amultilayeredstructure consistingofanouter nickelsilicide layerand a middle Simodified NiAl layer followed by a diffusion zone. The pack compositions and deposition conditions may be adjusted to control the microstructure of the coatings formed by the codeposition process.  相似文献   

4.
Abstract

Thermochemical analyses were carried out for a series of pack powder mixtures formulated for codepositing Al with Cr to form diffusion coatings on γ-TiAl resistant to high temperature oxidation by the pack cementation process. Based on the results obtained, experimental studies were undertaken to identify optimum pack powder mixtures for codepositing Al with Cr to form diffusion coatings with an adherent and coherent coating structure. The results of the thermochemical calculations performed indicated that codeposition of Al and Cr is possible with CrCl3.6H2O and AlCl3 activated pack powders containing elemental Al and Cr as depositing sources. However, experimental results obtained at 1100°C revealed that CrCl3.6H2O is not suitable for use as an activator for codepositing Al with Cr on γ-TiAl. It caused a significant degree of degradation indicated by weight losses instead of coating deposition to the substrate. However, adherent coatings with excellent structural integrity consisting of an outer Cr doped TiAl3 layer containing Al67Cr8Ti25 phase and an inner layer containing TiAl3 and TiAl2 phases were successfully codeposited at 1100°C using pack powder mixtures activated by AlCl3. It is suggested that such coatings were formed via a sequential deposition mechanism through inward diffusion of aluminium and chromium. Conditions that affect the pack codeposition process, and hence need to be carefully controlled, are discussed in relation to the mechanism of the formation of diffusion coatings with an integral structure free from microcracking on γ-TiAl.  相似文献   

5.
This is a detailed study aimed to understand the effects of pack composition on the formation and growth of aluminide coatings on alloy steels by pack aluminisation at 650°C, a temperature below the melting point of Al (660°C), using pack powders consisting of Al as depositing source, a halide salt as an activator and Al2O3 as inert filler. The packs activated by AlCl3, NH4Cl, AlF3 and NH4F were used to investigate the effects of the type of halide salt on the coating formation and growth process and subsequently to identify the most suitable activator for pack aluminising alloy steels at 650°C. The effects of pack Al content on the rate of coating growth were then studied by varying the pack Al content from 1.4 wt% to 10 wt% whilst fixing the pack activator content at 2 wt%. It was observed that among the halide salts studied, AlCl3 is the only suitable activator for pack aluminising alloy steels at 650°C and the rate of coating growth increases with the pack Al content. The equilibrium partial pressures of vapour species generated at the deposition temperature in packs activated by different types of halide salts were calculated and the results were discussed in relation to the observed deposition tendency of packs activated by different types of activators. A vapour phase transportation model was applied to elucidate the relationship between the rate of coating growth and the pack Al content. It was also demonstrated that by combining the low temperature pack aluminising parameters identified in this study with electroless or electro Ni plating, coherent nickel aluminide coatings free of microcracking can be produced on alloy steels at 650°C.  相似文献   

6.
A CeO2-dispersed aluminide coating was fabricated through aluminizing the electrodeposited Ni-CeO2 nanocomposite film on carbon steel using pack cementation method at 700 °C for 4 h. The isothermal and cyclic oxidation behavior of the CeO2-dispersed aluminide coating at 900 °C, including the growth of oxide scale and the microstructure of the coatings, have been investigated comparing with the aluminide coating on carbon steel. The results show enhanced oxidation performance of the CeO2-dispersed aluminide coating, which is concerned with not only CeO2 effect on the microstructure and oxidation, but also decreased interdiffusion between the aluminide and the Ni film. The CeO2 benefit effects and interdiffusion are discussed in detail.  相似文献   

7.
Y.B. Zhou  H.J. Zhang 《Vacuum》2012,86(9):1353-1357
An Al2O3-modified aluminide coating was produced by aluminizing an as-electrodeposited Ni-Al2O3 nanocomposite film using pack cementation method at 1100  C for 4 h. For comparison, aluminizing was also performed in the same condition on an as-deposited Ni film without Al2O3 nanoparticles. SEM/EDAX and TEM results indicated that the co-deposited Al2O3 nanoparticles were homogeneously dispersed in the finer-grain nanocrystalline Ni grains. The isothermal and cyclic oxidation in air at 900 °C indicated that the Al2O3-modified aluminide coatings were profoundly oxidation resistant as compared to the Al2O3-free aluminide coatings due to the faster formation of a continuous adherent α-Al2O3 scale. The effect of Al2O3 on the microstructure and the oxidation of the aluminide coating are discussed in the detail.  相似文献   

8.
Abstract

The present study investigates the conditions required for forming a hybrid coating consisting of an outer nickel aluminide layer and an inner nickel layer on alloy steels. A commercial alloy steel of 9Cr–1Mo was used as a substrate. Electroless and electronickel plating processes were used to form an initial nickel layer on the steel. The AlCl3 activated packs containing pure Al as a depositing source were then used to aluminise the nickel deposit at temperatures ≤650°C. The effect of phosphorus or boron content in the initial nickel layer deposited with the electroless nickel plating solutions using hypophosphite or boron–hydrogen compound as reducing agent was investigated in relation to the spallation tendency of the coating either immediately after the aluminising process or during the thermal annealing post-aluminising process. Under the aluminising conditions used, the outer nickel aluminide layer formed was Ni2Al3. For the electroplated nickel deposit, the growth kinetics of the outer Ni2Al3 layer during the pack aluminising process was found to obey the parabolic rate law with a parabolic rate constant being 12·67 μm at 650°C for 2 wt-%AlCl3 activated pack containing 4 wt-% pure Al as a deposition source.  相似文献   

9.
Abstract

The pack aluminisation process is normally applied at temperatures >973 K at which the mechanical properties of alloy steels would degrade. Thus, the present study was undertaken to apply this process to aluminising the alloy steels at temperatures <973 K in order to increase their high temperature oxidation resistance while maintaining their microstructure and hence mechanical strength and creep resistance. A type of commercial alloy steel P92 (9Cr–1Mo) was used for the present study. Pack powder mixtures consisting of Al, AlCl3 (anhydrous) or NH4Cl and Al2O3 were used to carry out the process. The aluminising temperature was varied from 773 to 973 K, pack Al content from 1 to 30 wt-% and aluminising time from 1 to 16 h to investigate their effects on the coating growth kinetics in the AlCl3 activated packs. It was observed that all the coatings formed in the AlCl3 activated packs were of a single layer structure with Fe2Al5 as the main coating phase. It was established that the interrelationship between the thickness h (in μm) of this coating layer and aluminising temperature T (in K), time t (in h) and pack Al content W (in wt-%) can be described by h=83005·9W1/2t1/2e?73330/(RT). In the NH4Cl activated packs, it was found that coating formation and dissolution took place simultaneously at 923 K and stable growth of a coating layer was only possible when the pack Al content was sufficiently high. However, the coatings formed in these packs had highly uneven regions.  相似文献   

10.
Nano alumina powder can be widely used in the fields of electronics, catalyst supports and high temperature applications. In the present article, a nano Al2O3 powder was synthesized by a simple aqueous sol-gel method using inexpensive AlCl3·6H2O and Al powder as raw materials. It was shown that the gel calcined at 1100 °C resulted in the formation of a crystalline α-Al2O3 nano powder. It had a particle size distribution ranging from 32 to 100 nm after heat treatment at 1200 °C.  相似文献   

11.
A simple, one-step slurry coating technique was used to aluminize open cell nickel metal foam at low temperature and short hold-down time. Three slurries of different composition, heat-treated at 650 °C for 2 h, were used to investigate the possibility of developing an aluminide coating on a commercially produced Ni foam. In all cases a dense, well-adhered to the Ni substrate aluminide coating of several μm thickness was produced. The thickness and aluminide phase and composition (NiAl and/or Ni3Al) of the coating strongly depend on Al content and the mix of activators in the slurry.  相似文献   

12.
A material consisting of an in‐situ titanium carbide reinforced nickel‐aluminide (Ni3Al) coating and a powder metallurgy master alloy was fabricated by vacuum hot‐pressing sintering technology. A metallurgical bonded, pores‐free interface between composite coating and powder metallurgy master alloy was formed at the sintering temperature of 1050 °C, pressure of 10‐4 Pa and pressing pressure of 40 MPa. The phase, microstructure and wear behavior of composite coating were investigated. The results showed that polygonal titanium carbide particulates with various sizes were homogeneously distributed in nickel‐aluminide matrix. The sintering temperature, pressing pressure and heat from as‐reactions‐formed coating green compact facilitated the pore infiltration with transiently generated liquid phases and ensured the high‐intensity metallurgical bonding between composite coating and powder metallurgy master alloy. Due to the abnormal elevated‐temperature properties of nickel‐aluminide matrix, titanium carbide particulates reinforcement and the mechanically mixed layer protection, TiC/Ni3Al‐coated parts demonstrated superior wear resistance and lower friction coefficient while compared with Ni3Al‐coated parts and H13 steel.  相似文献   

13.
It is difficult to deposit dense intermetallic compound coatings by cold spraying directly using compound feedstock powders due to their intrinsic low temperature brittleness. A method to prepare intermetallic compound coatings in-situ employing cold spraying was developed using a metastable alloy powder assisted with post heat treatment. In this study, a nanostructured Fe(Al)/Al2O3 composite alloy coating was prepared by cold spraying of ball-milled powder. The cold-sprayed Fe(Al)/Al2O3 composite alloy coating was evolved in-situ to FeAl/Al2O3 intermetallic composite coating through a post heat treatment. The effect of heat treatment on the phase formation, microstructure and microhardness of cold-sprayed Fe(Al)/Al2O3 composite coating was investigated. The results showed that annealing at a temperature of 600 °C results in the complete transformation of the Fe(Al) solid solution to a FeAl intermetallic compound. Annealing temperature significantly influenced the microstructure and microhardness of the cold-sprayed FeAl/Al2O3 coating. On raising the temperature to over 950 °C, diffusion occurred not only in the coating but also at the interface between the coating and substrate. The microhardness of the FeAl/Al2O3 coating was maintained at about 600HV0.1 at an annealing temperature below 500 °C, and gradually decreased to 400HV0.1 at 1100 °C.  相似文献   

14.
通过热力学计算分析了分别使用NH4Cl和CrCl3·6H2O两种不同激活剂时, 各个共渗元素的卤化物蒸汽压分压的变化, 得到了实现Nb-Si基原位复合材料上Si-Cr-Y三元包埋共渗的最佳条件。采用包埋共渗法在Nb-Si基原位复合材料表面制备了Si-Cr-Y共渗涂层, 研究了涂层的组织形貌、 成分及其相组成。结果表明: 使用NH4Cl做激活剂, 通过调整包埋渗料的成分, 可以在适当的温度下实现Si-Cr-Y的三元共渗。当渗料成分为12Cr-6Si-0.75Y2O3-5NH4Cl-76.25Al2O3(质量分数)时, 在1350℃可以实现Si-Cr-Y三元共渗。制备的涂层具有多层结构, 分为外层、 内层和明显的互扩散层。互扩散层的存在, 表明涂层的形成是一个连续生长过程, 伴随着Cr、 Si、 Y元素向基体内的扩散。涂层的主要成分由Cr2(Nb,Ti)、 (Nb,Ti)5Si3和HfSi2组成, Y元素的添加起到了细化涂层的作用。  相似文献   

15.
Cerium-doped lutetium pyrosilicate (Lu2Si2O7:Ce) powder was synthesized by solid state reaction of Lu2O3 and SiO2. Stoichiometric mixtures of the starting materials were heat treated at various different temperatures and their phase contents were measured by XRD technique. It was found that the first step in the formation of Lu2Si2O7 (LPS) is the appearance of Lu2SiO5 (LSO). This takes place at 1100 °C, fully 300 °C below the first appearance of LPS. Between 1400 and 1500 °C both LSO and LPS coexist in the calcined batch, but by 1550 °C all LSO is completely converted to LPS. LPS formation temperature does not have appreciable effect on the density of the hot pressed samples. Hot pressed samples obtained from powder synthesized at 1650 °C are nearly transparent, although the particle size of the starting powder is higher than that of the powder formed at lower temperatures.  相似文献   

16.
《Vacuum》2012,86(2):210-217
A CeO2-dispersed aluminide coating was fabricated through aluminizing the electrodeposited Ni–CeO2 nanocomposite film on carbon steel using pack cementation method at 700 °C for 4 h. The isothermal and cyclic oxidation behavior of the CeO2-dispersed aluminide coating at 900 °C, including the growth of oxide scale and the microstructure of the coatings, have been investigated comparing with the aluminide coating on carbon steel. The results show enhanced oxidation performance of the CeO2-dispersed aluminide coating, which is concerned with not only CeO2 effect on the microstructure and oxidation, but also decreased interdiffusion between the aluminide and the Ni film. The CeO2 benefit effects and interdiffusion are discussed in detail.  相似文献   

17.
The codeposition of Co, Al and Hf on nickel base superalloys by pack cementation in a single-step process was investigated in this work. Thermochemical analyses were applied to search for suitable conditions including pack composition and deposition temperature. Co, Al, Hf, NH4Cl, NH4I and Al2O3 made up the pack powder mixture. According to a series of thermochemical calculations, the pack powder mixture of 20Co–10Al–2Hf–4NH4Cl–4NH4I–60Al2O3 (wt.%) was adopted. Further experimental results demonstrated that the codeposition of Co, Al and Hf could be achieved practically. The coating consisted of a diffusion zone and an outer layer. The outer layer was mainly composed of Al0.9Ni1.1 where a part of Ni was replaced by Co or Hf. The trace element Hf was enriched in the interface between the outer layer and the diffusion zone. The Co–Al–Hf coating exhibited excellent cyclic oxidation resistance due to improvement in adhesion between the oxide scale and the coating.  相似文献   

18.
An investigation was carried out to determine the thermal stability of a platinum aluminide coating on the directionally solidified alloy MAR M 002 and its single-crystal version alloy, SRR 99, at 800, 1000 and 1100°C. The morphology, structure and microchemical composition of the coating were characterized using scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. In the as-deposited condition, the coating was found to consist of two layers. Most of the platinum was concentrated in the outer coating layer which consisted of a fine dispersion of PtAl2 in a matrix of β-(Ni, Pt)Al containing other elements in solid solution, such as cobalt and chromium. The inner coating layer was relatively free of platinum and consisted essentially of β-NiAl. Exposure at 800°C was found to have no significant effect on the structure and composition of the coating on each alloy. At temperatures ?1000°C, however, PtAl2 became thermodynamically unstable and significant interdiffusion occurred between the coating and alloy substrate. After exposure at 1000°C, the components of the outer coating layer were NiAl and Ni3Al. However, after exposure at 1100°C, the outer coating layer consisted only of Ni3Al. Also, after exposure at both temperatures, the composition of the outer coating layer approached that of the inner layer due to interdiffusion. Although the coating on both alloys exhibited similar structural stability at all temperatures investigated, the coating on alloy MAR M 002 was found to develop a more protective scale. This behaviour was correlated with differences in alloy substrate composition particularly rare-earth elements such as hafnium.  相似文献   

19.
In the present investigation, Pt/Ru-modified bond coating consisted of 2 μm Pt+2 μm Ru was deposited on a nickel-based superalloy by electroplating method and followed by conventional Al pack cementation. The cyclic corrosion behavior of Pt/Ru-modified bond coating exposed to NaCl plus water vapor has been investigated under atmospheric pressure at 1050°C. The result shows that the cyclic corrosion life of Pt/Ru-modified bond coating is longer than that of the conventional Pt-modified aluminide coating in the presence of NaCl plus water vapor. The addition of Ru makes the coating possess the increased strength and suppress the rumpling behavior. The absence of rumpling may be responsible for the improved corrosion resistance of Pt/Ru-modified aluminide coating.  相似文献   

20.
Armco iron was siliconized with two different gas mixtures in the temperature range of 750 to 1100 °C. The Ar-SiH4-H2 mixture leads mainly to the formation of a non-porous and adherent solid solution with a maximum silicon content of 6% by weight. For high concentrations of silane in the vapour phase or low treatment temperatures, non adherent pure silicon powder or flakey iron silicides may also depose. The use of Ar-SiH4-SiCl4-H2 mixture leads to the immediate nucleation of Fe3Si, the growth of which occurring from and around the open porosity of the coating. The influence of various parameters such as vapour phase composition and flow rate, hydrogen dilution and treatment temperature, is investigated and analysed in terms of limiting factors of the overall process: gas phase transport, interfacial reactions and diffusion velocity of different species in solid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号