首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
本文简述闪光灯泵浦的掺钛宝石激光器的发展状况和应用前景,描述了我们研制成功的实用型四灯泵浦的掺钛宝石激光器实验装置和实验结果.实验中采用本单位生长的掺钛宝石棒尺寸为φ100×160mm,有效泵浦长度为152mm;平凹激光谐振腔,腔长35cm;自制的四灯聚四氟乙烯聚光筒,漫反射效率98%;四灯串联泵浦,闪光脉宽为10μs.当输入能量为320J时,激光输出达到1.7J,激光效率0.6%,重复频率1Hz,可调谐范围700~1000nm.  相似文献   

2.
陶瓷泵浦腔的实验研究   总被引:1,自引:0,他引:1  
邱文法 《激光杂志》1994,15(4):179-182
本文报道了用于小型Nd:YAG激光器的二种陶陶瓷泵浦腔的比较结果,灯类型对泵浦效率的影响,并讨论了泵浦均匀性。  相似文献   

3.
聚光腔是灯泵固体激光的重要部件,主要作用是最大限度地将泵浦光能聚集到激光棒上的同时,尽可能使激光棒获得均匀的泵浦。为了实现灯泵固体激光器大能量输出,需考虑优化激光聚光腔,提高其泵浦效率。通过以蒙特卡洛离散方法为核心的光线追迹技术和合理的模型建立,以四灯为例,研究了对确定直径的激光棒,泵浦效率随构成腔体的椭圆长短轴比(a/b)的变化,以及同样的长短轴比下,泵浦效率随泵浦灯直径的变化。得到了在确定直径的激光棒和泵浦灯下,泵浦效率最高的椭圆长短轴比例。此外,研究了对确定直径的激光棒在不同直径泵浦灯的情况下,泵浦均匀性随椭圆长短轴比a/b的变化。  相似文献   

4.
杨智敏 《激光技术》1989,13(2):46-50
本文提出了一种设计重复频率激光器泵浦腔的计算机绘图直观模拟方法—"双切线光路旋转法"。使用此方法可确定泵浦腔的聚光效率,腔体的尺寸,并可根据所用YAG棒径与棒长,确定与之匹配的泵浦灯径、灯长,还用计算机对泵浦腔冷却液通道的口径进行了模拟计算。  相似文献   

5.
本文介绍一种泵浦灯放在激光物质中心的高效新型激光器。文章以单灯椭圆腔为例,分析了提高现有普通激光器效率所存在的问题,进而提出一种泵浦灯放在激光物质中心的新型激光器。  相似文献   

6.
本文详细介绍了两种固体激光器最常用的泵浦灯-脉冲氙灯和连续氪灯的种类,结构,三种封接形式的优缺点与抗冲击性能,发射光谱,效率,寿命等特性,提出了提高泵浦灯效率及寿命的方法。  相似文献   

7.
本文详细介绍了两种固体激光器最常用的泵浦灯—脉冲氙灯和连续氪灯的种类、结构、三种封接形式的优缺点与抗冲击性能、发射光谱、效率、寿命等特性,提出了提高泵浦灯效率及寿命的方法。  相似文献   

8.
众所周知,置于激光器的聚光腔中的泵浦脉冲灯,比公开发表的文献[1~4]的灯工作更有效。这是因为除电能外,还有灯本身辐射的而未被激活介质所吸收的那部分能量,也进入到灯内。由于由聚光腔壁多次反射,返回灯内的这部分额外的能量进行加热等离子体,并辐射,其中也有激活元素的泵浦光谱带在内的辐射。因此,在泵浦系统中,将未被激活介质所吸收的脉冲灯的可见和紫外辐射的一部分,转换为泵浦的长波带辐射。  相似文献   

9.
报导一种全新冷却方式的双椭圆泵浦腔,具有较高的泵浦效率和光学均匀性。1.06μm调Q脉冲输出能量总转换效率η>0.75%  相似文献   

10.
在脉冲YAG激光器中,在保持激光棒,泵浦氙灯,谐振腔不变的情况下,实验研究了不同聚光腔对该器件振荡效率的影响,并作了相应的分析。实验表明,精心制作的用MgO粉压制的漫反射聚光腔有不低于单椭园柱聚光腔的效率,并且有制作简便,成本低,照明较均匀,性能稳定,灯和激光棒能方便地同时冷动等优点。  相似文献   

11.
The geometrical design parameters of coherently pumped far infrared waveguide laser cavities are analyzed with respect to minimization of pump power losses. The advantages of highly degenerate cavities and off axis displacement of the injection hole are outlined. Relations between the cavity parameters are given which simplify the design of cavities with high pumping efficiency.  相似文献   

12.
Calculations suggest that optical parametric oscillators (OPO's) can be efficiently pumped using multimode, divergent pump sources. The influence of pump beam divergence and mode structure upon OPO performance is measured for both noncritical phase-matching, and OPO's with walkoff. Multimode OPO pumping is shown to be efficient, provided appropriate nonlinear crystals and OPO cavities are employed; the nonlinear crystal must have sufficient angular acceptance to tolerate a divergent pump; the OPO cavity must support modes that match the divergence and spatial intensity characteristics of the pump, For low-order pump modes, the OPO can be made to match the mode of the pump. Higher order pump modes reduce the OPO efficiency, and cause a saturation of efficiency with increasing pump power. The efficiency is degraded in a similar fashion in the presence of walkoff. Multimode pumping is more difficult in longer OPO cavities due to increased buildup time of higher order OPO modes  相似文献   

13.
Modeling of longitudinally pumped CW Ti:sapphire laser oscillators   总被引:4,自引:0,他引:4  
Longitudinal pumping of CW Ti:sapphire oscillators is considered to predict the power output of such oscillators using folded, astigmatically compensated cavities. The model predicts how the oscillator performance is affected by the selection of Ti3+ concentration, material figure of merit, rod length, and pump and cavity mode waists. Experimental results for broadband CW oscillators pumped by CW argon ion lasers are reported, and these are shown to be in excellent agreement with theory. Nearly 30% slope efficiency is achieved with a four-mirror folded cavity and even higher efficiencies are predicted for optimized pumping  相似文献   

14.
We report results on hexagonal-shaped microlasers formed from two-dimensional photonic crystals (PCs) using InP-based materials transferred and bonded onto SiO/sub 2// Si wafers. Two types of hexagonal cavities are investigated : single defect (one hole missing) cavities, so-called H1 cavities (1 /spl mu/m in diameter) and two holes missing per side H2 cavities (2 /spl mu/m in diameter). Their optical properties are analyzed using photoluminescence experiments, and plane wave method simulations have been performed for comparison. High Q modes (/spl sim/600/700) have been measured and they have been shown to enable laser effect at room temperature, under pulsed optical pumping (15% duty cycle and 25-ns pulsewidth). The study of these efficient mode characteristics gives guidance for further improvement of the operation conditions of PC lasers, such as the reduction of the threshold pumping power.  相似文献   

15.
The results of an experimental investigation into lasing and spontaneous emission from Ne(He, Ar)-Kr-HCl are presented. Evidence has been gathered of the effect of the pumping power, preionization rate, pumping pulse duration, and composition and pressure of the gas mixture on the lasing characteristics under discharge pumping. KrCl* formation efficiency is shown to be nearly half as much as for XeCl*. The output energy was 0.65 J for ~60 ns laser pulse duration (FWHM), 2.5% efficiency based on the pumping power, and 0.65% efficiency based on the stored energy while for the 10 ns pulse duration, 2.7% efficiency based on the pumping power and 0.8% efficiency based on the stored energy the output energy was 0.15 J. Recommendations are made for development of KrCl lasers with maximum output parameters  相似文献   

16.
980 nm抽运时掺铒光纤放大器中的上转换发光效应研究   总被引:1,自引:0,他引:1  
采用980nm抽运的掺铒光纤放大器(EDFA)中存在上转换发光效应。能级分析和光谱扫描结果表明上转换辐射光为绿色荧光。波长为538nm和514nm,其产生机理为铒离子的激发态吸收效应(ESA)。从理论和实验两方面分析了抽运功率和信号功率这两个放大参量对上转换绿色荧光的影响,结果表明,存在一个特殊抽运功率值,当抽运功率小于该值时,上转换绿色荧光的抽运效率随抽运功率的增加而快速增大;抽运功率大于该值时,上转换绿色荧光的抽运效率变化缓慢,基本保持稳定。掺铒光纤放大器工作在线性放大状态下,输入信号的有无和功率大小对绿色荧光影响很小;掺铒光纤放大器工作在饱和状态下,绿色荧光功率随输入信号功率增加而增加。  相似文献   

17.
染料激光器由于不同的抽运方式,在出光效率和最佳输出耦合率等参数上有很大的不同.根据速率方程理论,分析了铜蒸气激光器(CVL)511 nm横向抽运染料罗丹明6G(Rh6G)激光振荡器的光-光转换效率问题.得出染料对激光的自吸收损耗效应是造成横向抽运和纵向抽运两种方式光-光转换效率与输出耦合率差异的主要原因.对不同的染料Rh6G浓度和不同的输出耦合镜反射率进行横向抽运实验,得到8.2%的最高光-光转换效率.实验结果显示横向抽运时较低的Rh6G浓度可以降低染料自吸收效应对出光效率的影响.同时,最佳输出耦合镜的反射率比纵向抽运时小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号