首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 197 毫秒
1.
设计了一个带电源电压补偿和温度补偿的低功耗环形振荡器电路,环形振荡器采用受限于PTAT电流的反相器和普通CMOS反相器级联结构。由于电源电压和温度对这两种反相器传播延时的影响是相反的,利用这种相反的特性使得振荡器输出频率在电源电压和温度特性上得到补偿。该电路采用0.18μm CMOS工艺,测试结果显示在5 V电源电压以及27℃温度条件下,输出频率为263 k Hz,平均电流消耗为2.5μA。在3.5 V~5.5 V电源电压和-40℃~85℃的温度变化范围内,输出频率偏差在-2.3%~6.5%范围内。  相似文献   

2.
针对在较宽的电源电压和温度变化范围内一般的振荡器频率误差较大的问题,研究并设计了一种广泛用于电荷泵(ChargePump)电路和DC/DC电压转换电路的高稳定性的CMOS型OTA-C张弛振荡器;该振荡器利用基准电流源产生的恒流源对电容进行充放电,同时利用高速度、低功耗的跨导运算放大器OTA作比较器比较阈值电压,再经整形滤波电路产生频率为1MHz方波信号;该电路采用0.6μm的CMOS工艺设计,利用Hspice进行仿真验证,结果表明,温度在-40℃~85℃,同时电源电压在2.6V~5.5V之间变化时,该张弛振荡器振荡频率随温度和电源电压的变化很小,总体误差在±2.5%以内,比较适合于产生低速时钟信号;此电路已成功集成到某型DC/DC电压转换芯片之中。  相似文献   

3.
《电子技术应用》2017,(3):25-28
在LED驱动电路中,若采用传统的BUCK型DC-DC降压方式或利用MOS管级联钳制降压方式为芯片内部低压模块提供电源,存在不易集成化和受高压工艺限制等问题。为此,提出了一种改进的高压稳压电路,利用高压LDMOS构成电流源对RC电路充电,电容上的电压经过线性稳压器稳压后给芯片提供稳定的低压电源。该电路只需外置电容,其他部分均可集成在一块芯片上。基于华虹宏力0.5μm 700V BCD工艺对电路进行仿真验证,在0~311 V周期脉动高电压输入条件下,电路能稳定输出4.97 V;负载电流在0~10 mA范围内变化,负载调整率为11.6 mV/mA;在-40℃~130℃温度范围内,输出电压温度系数为27.2 ppm/℃。仿真结果表明,该高压稳压电路各指标参数均满足预期要求。  相似文献   

4.
《微型机与应用》2018,(4):116-119
电荷泵电路是闪速存储器中的一个重要部分,用于对存储单元进行编程、擦除和读取。为实现精确编程操作,需要小的电荷泵输出纹波。结合开关模式和频率调制模式的优点,采用0.18μm浮栅工艺实现一种新型电荷泵调节电路。为减小电路结构,该电路重复利用误差放大器,将两级米勒运算放大器的第一级用作比较器,第二级输出实现频率调制以减小纹波。为在轻载时保证同样的纹波性能,对电容驱动器实行连续调节控制输出电流以适应负载变化。利用Cadence Spectre工具对该电路进行仿真,电源电压为1.8 V,输出电压为3.4~3.6 V;轻载时纹波为62 m V,重载时纹波为35 m V。仿真结果表明,该电路既能减少电路,又能降低纹波。  相似文献   

5.
基于RFID标签芯片的低功耗要求,设计了一种超低功耗的带隙基准电压源,电路中的主要MOS管都工作在亚阈值状态。在spectre环境下仿真表明,当电源电压为3 V~7 V,温度在-30℃~+120℃变化时,输出基准电压为1.8 V±0.001 V。电源电压抑制比(PSRR)为69.5 dB,并且电路工作电流维持在1.5μA~7μA的范围内。  相似文献   

6.
提出了一种适用于锂电池的电流监测电路,通过在锂电池供电环路引入灵敏电阻对电流进行采样,并使用时钟控制开关电容运算放大器和高速比较器,实现从模拟信号到数字信号的转换。在处理器中进行精确电流量的运算,能对过流、短路电流进行保护,也能用于精确计算电池阻抗、电量等相关参数。电路基于0.18μm CMOS工艺,电源电压为2.5 V。对所设计电路进行了仿真验证。结果表明,该电路在-40℃~+125℃应用环境温度范围内能够实现对电流的采样和编码功能,并且能对充放电动作进行判断。  相似文献   

7.
王洪全  龚敏 《微处理机》2011,32(5):1-3,7
设计了一种改进的带隙基准电压源,通过采用分段电流补偿的方法,实现了低压高精度供电。研究基于TSMC 0.35μm CMOS 3V工艺基础,重点考虑主要工作温度区域输出电压随温度变化的精度问题。仿真结果表明,该电路可提供低至500mV的低压,实现了高阶电流补偿,在-40℃~+100℃温度范围内其温漂系数仅为3.7ppm/℃,在芯片主要工作温度范围内,输出基准电压最大偏差小于8μV,低频时电源抑制比为-70dB。  相似文献   

8.
因为传统的带隙电压基准源只经过了一阶温度补偿,且输出电压只能在1.2 V左右,所以为了得到一个可调的、更高精度的电压基准源,提出了电流模式的带隙电压基准源电路。电路采用了高阶曲率补偿方法,且输出的基准电压可根据输出电阻的大小进行调节。电路采用gpdk090 CMOS工艺,通过Spectre仿真,当电源电压为3.6 V、在-60℃~-120℃温度范围内、温度系数为14.4×10-6/℃时电源电压抑制比为78.3 d B,输出电压平均为1.162 V。  相似文献   

9.
AIC1713是台湾沛亨半导体公司生产的新型三端负稳压器系列,输出电压:-3.3V、-4.1V及-5.0V,输出电源50mA。该系列稳压器静态电流小于22μA;温度系数-100ppm/℃;工作电压最大为-12.5V;可不接输入电容、输出电容仅需1μF;内部有短路保护电路;封装有贴片式SOT-89 及TO-92两种可供用户选择;工作温度范围为0~70℃。与 79系列负稳压器相比,具有低输出电压、耗电省、压差小特点,  相似文献   

10.
为了满足温度传感器芯片对带隙基准源高性能的要求,设计了一种高精度低温度系数带隙基准源。该带隙基准源利用电阻比值校正了一阶温度系数带隙基准电路的非线性温度特性,使得输出的基准电压的精度和温度系数有了很大提高。采用0.8μm BiCMOS(Bipolar-CMOS)工艺进行流片,带隙基准电路所占面积大小为0.04mm???2。测试结果表明:在5V电源电压下,在温度-40~125℃范围内,基准电压的温度系数为1.2×10-5/℃,基准电流的温度系数为3.77×10-4/℃;电源电压在4.0~7.0V之间变化时,基准电压的变化量为0.4 mV,电源调整率为0.13mV/V;基准电流的变化量为变化量约为0.02μA ,电源调整率为6.7nA /V。  相似文献   

11.
设计了RC充电时间过零点不变性振荡器,该振荡器提供对电压和温度不敏感的高精度高稳定性时钟信号。分析并推导了RC充电过程中过零电压的时间不随电源电压变化的特性,采用温度补偿技术最大限度地保证了RC充电过程中过零电压的时间不随温度变化。基于180 nm工艺实现了该振荡器,仿真结果表明,该振荡器可以稳定输出2 MHz,电压从2.5 V~5.5 V的频率波动小于1%,温度从-40℃~125℃的频率波动小于1%,PVT条件下的最大电流不超过150μA。  相似文献   

12.
基于IBM 0.18μm SiGe BICMOS工艺,采用温度脉冲转换方式设计了一种应用于无源RFID标签的温度传感器。与绝对温度呈正比(PTAT)的电流源和电流饥饿环型振荡器产生频率与温度呈正相关的振荡信号,作为计数器的时钟信号;用数字模块对接收的帧头代码进行处理得到一个宽度为200μs的脉冲信号,作为计数器的使能信号;利用时域数字量化方式就可以得到不同温度下的数字信号。温度传感器总面积为0.03 mm2,温度在-100~120℃范围内变化时,振荡器输出频率范围由800 kHz~1.8 MHz。在1.8 V电源电压下,温度传感器平均输出电流约为13μA,芯片测试结果的有效分辨率可以达到0.864 LSB/℃。  相似文献   

13.
集成于无源UHF RFID标签的新结构CMOS温度传感器   总被引:1,自引:0,他引:1  
张欢  毛陆虹  王倩  谢生  张世林 《传感技术学报》2011,24(11):1526-1531
设计了一种集成于无源UHF RFID标签芯片的新结构温度传感器.利用高PSRR共源共栅结构的电流镜偏置电路产生两路温度系数相反的电流,实现了偏置电流对电源电压和温度补偿.与温度相关的脉冲信号由类似差分的结构产生,有效的克服了工艺偏差导致的误差.计数时钟信号由标签内部振荡器提供,振荡器频率受偏置电流控制近似与电源电压和温...  相似文献   

14.
一种两级误差放大器结构的LDO设计   总被引:1,自引:0,他引:1  
基于SMIC 0.18μm CMOS工艺,设计了一种两级误差放大器结构的LDO稳压器。该电路运用两级误差放大器串联方式来改善LDO的瞬态响应性能,采用米勒频率补偿方式提高其稳定性。两级放大器中主放大器运用标准的折叠式共源共栅放大器,决定了电路的主要性能参数;第二级使用带有AB类输出的快速放大器,用来监控LDO输出电压的变化,以快速地响应此变化。电路仿真结果显示:在电源电压为5 V时,输出为1.8 V,输出电压的温度系数为10×10-6/℃;当电源电压从4.5 V到5.5 V变化时,线性瞬态跳变为48 mV;当负载电流从0 mA到60 mA变化时,负载瞬态跳变为5 mV。且环路的相位裕度为74°,整个电路的静态电流为37μA。该电路结构的瞬态跳变电压值远小于其他电路结构,且能实现低功耗供电。  相似文献   

15.
提出一种高分辨率的集成于无源UHF RFID标签的CMOS温度传感器结构。采用时域数字量化的方式,用与绝对温度成正比PTAT(Proportional to Absolute Temperature)电流源和标签内部振荡器构成的PTAT振荡器产生脉冲宽度与温度相关的脉冲信号,作为计数器的时钟信号,在温度-50℃~50℃范围内,脉冲周期从1.841μs~0.426μs;用数字电路对阅读器发送的帧头命令进行处理得到一个宽度为200μs的宽脉冲信号,作为计数器的使能信号,该脉冲的宽度完全不受温度影响;通过采样计数,得到包含温度信息的数字信号。本设计采用0.18μm UMC CMOS工艺,电源电压为1.8 V,直流功耗为789 nW,温度传感器后仿的有效分辨率达到0.332 LSB/℃。  相似文献   

16.
设计了一种利用电阻比值校正一阶温度系数带隙基准电路的非线性温度特性来实现低温度系数的高精度低温度系数带隙基准源;同时设置了修调电路提高基准电压的输出精度.该带隙基准源采用0.8μm BiCMOS(Bipolar-CMOS)工艺进行流片,带隙基准电路所占面积大小为0.04 mm2.测试结果表明:在5 V电源电压下,在温度-40℃~125℃范围内,基准电压的温度系数为1.2×10-5/℃,基准电流的温度系数为3.77×10-4/℃;电源电压在4.0 V~7.0 V之间变化时,基准电压的变化量为0.4 mV,电源调整率为0.13 mV/V;基准电流的变化量为变化量约为0.02μA,电源调整率为6.7 nA/V.  相似文献   

17.
提出了一款应用于RF无线收发芯片的高精度电流偏置电路。综合考虑功耗、面积和失调电压对基准电压的影响,设计了一款符合实际应用的带隙基准电路。并以带隙基准电路作基准电流源的偏置,采用电压电流转换器结构设计了具有高电源电压抑制比(PSRR)的基准电流源。电流镜采用辅助运放的设计方法来提高电流镜的输出阻抗,减小沟道调制效应对输出的基准电流的影响,从而提高输出基准电流的精度。采用0.35μzmCMOS工艺设计芯片版图,版图面积为0.18mm^2。提取寄生参数(PEX)仿真结果表明,该电路在-55℃~+90℃范围内的温度系数为15.5ppm/℃,室温下基准电压为1.2035V;在低频段电流源的电源抑制比为90dB;在外接电阻从1kΩ~400kΩ变化时,输出基准电流误差范围是0.0001μA。  相似文献   

18.
The 60-meter band range is tremendously useful in telecommunication, military and governmental applications. The I. T. U. (International Telecommunication Union) required isolationism to former radio frequency services because the various frequency bands are extremely overloaded. The allocation of new frequency bands are a lengthy procedure as well as time taking. As a result, the researchers use bidirectional, amateur radio frequency communication for 60-meter band, usually the frequency slot of 5250–5450 KHz, although the entire band is not essentially obtainable for all countries. For transmission and reception of these frequencies, a local oscillator is used in the mixer unit to generate the local signal for mixing the input and reference signals. For this function different type of oscillators are used. In this paper, a three-stage ring oscillator is designed with 1 V supply. Ring oscillators (RO) is the base to explore like to identifying, specify with modelling resources in the disparity in behaviour of the circuit in terms of industrialized design and layout parameters. This type of oscillators are free from noise as inductor is not used to the circuit as in LC oscillator, Heartly oscillator, Colpitt and tuned oscillators. The present approach of circuit designing, the scaling of CMOS (Complementary Metal Oxide Semiconductor) transistor will moderate, the procedure variability. In the forthcoming article, a ring oscillator with fixed capacitor (1 pF) and with variable capacitors (1 to 100 pF) is analysed. The frequency analysis with different capacitor is performed. The total delay of 3-stage oscillator is 4.82 ns with 5.2 MHz oscillation frequency. The overall Power dissipation of the circuit is 1.852 μW at 1 V supply. The simulation analysis is performed on 45 nm CMOS technology with both transistor width are 278 and 420 nm.  相似文献   

19.
In this article, a low voltage low power quadrature voltage controlled oscillator (QVCO) coupled by four P&N transistors is presented. First, a novel negative resistance inductance capacitor (LC) oscillator is described, the N‐metal oxide semiconductor (NMOS) and P‐metal oxide semiconductor (PMOS) transistors are in series with the LC tank in the direct‐current (DC) path, and they generate the required negative resistance to compensate the energy loss of the LC tank and maintain the steady oscillation of the oscillator. Then, based on two identical LC oscillators, four P&N transistors are used as coupling terminals to generate quadrature outputs. The proposed QVCO is designed and simulated with GlobalFoundries' 0.18 μm CMOS RF process. The Cadence IC design tools postlayout simulation results demonstrate that the oscillation frequency of the QVCO can be tuned from 2.0 to 5.6 GHz by adjusting the bias voltage, and the phase noise of the voltage controlled oscillator is ?114 dBc/Hz at 1 MHz offset. Moreover, the proposed QVCO consumes only 2.31 mW from a 1.2 V supply voltage and it occupies a compact area of 0.45 mm2 including the bond pads.  相似文献   

20.
提出了一种利用多晶硅电阻的温度系数补偿负温度系数电压实现低温度系数的带隙基准电路,并且引入由二分频时钟控制的CMOS开关,使产生的失调电压正负交替做周期性变化相互抵消。采用BiCMOS 0.35μm工艺设计。仿真结果表明,此方法能够使MOS管在失配10%的情况下降低97%的失配,温度系数可达5.2 ppm/℃。工作电压为1.5 V~3.3 V、工作温度为-40℃~+70℃且工作在1.8 V常温下时,电路的工作电压为1.144 3 V,总电流为29.13μA,低频处的电源抑制比为-70 dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号