首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A five-generation family with the branchio-oto-renal (BOR) syndrome is reported demonstrating the great variability of this syndrome. Symptoms of the branchio-oto, branchio-oto-ureteral, and BOR syndromes are seen in different members of this family, suggesting that these are not real entities, but variants of the BOR syndrome.  相似文献   

2.
3.
Multiple roles of the eyes absent gene in Drosophila   总被引:1,自引:0,他引:1  
The eyes absent (eya) gene plays an essential role in the events that lead to formation of the Drosophila eye; without expression of eya in retinal progenitor cells, they undergo programmed cell death just prior to the morphogenetic furrow, leading to an eyeless or reduced eye phenotype. The eya gene has recently been found to be highly conserved to humans, defining a new gene family. Insights into the gene's function in the fly, therefore, are likely to be relevant to the role of its homologs in vertebrates. Detailed studies at the subcellular level indicate that the Eya protein is localized to the nucleoplasm, suggesting a role in control of nuclear events. The eya gene shows expression and roles in tissues other than the eye, including subsets of cells of the adult visual system, brain, and ovary, as well as an elaborate expression pattern in the embryo. Various mutations in the eya gene cause loss of ocelli, female sterility, or lethality. Analysis of the embryonic lethal phenotype indicates that mutant alleles show defects in head morphogenesis. These data indicate that eya has critical roles in morphogenesis of a number of tissues in the animal, in addition to its role in early eye formation. Despite multiple roles at multiple stages of development of the fly, both the type I and type II forms of the protein, when expressed ectopically during larval development, can direct eye formation.  相似文献   

4.
Progressive myoclonus epilepsy (EPM1) is an autosomal recessive disorder, characterized by severe, stimulus-sensitive myoclonus and tonic-clonic seizures. The EPM1 locus was mapped to within 0.3 cM from PFKL in chromosome 21q22.3. The gene for the proteinase inhibitor cystatin B was recently localized in the EPM1 critical region, and mutations were identified in two EPM1 families. We have identified six nucleotide changes in the cystatin B gene of non-Finnish EPM1 families from northern Africa and Europe. The 426G-->C change in exon 1 results in a Gly4Arg substitution and is the first missense mutation described that is associated with EPM1. Molecular modeling predicts that this substitution severely affects the contact of cystatin B with papain. Mutations in the invariant AG dinucleotides of the acceptor sites of introns 1 and 2 probably result in abnormal splicing. A deletion of two nucleotides in exon 3 produces a frameshift and truncates the protein. Therefore, these four mutations are all predicted to impair the production of functional protein. These mutations were found in 7 of the 29 unrelated EPM1 patients analyzed, in homozygosity in 1, and in heterozygosity in the others. The remaining two sequence changes, 431G-->T and 2575A-->G, probably represent polymorphic variants. In addition, a tandem repeat in the 5' UTR (CCCCGCCCCGCG) is present two or three times in normal alleles. It is peculiar that in the majority of patients no mutations exist within the exons and splice sites of the cystatin B gene.  相似文献   

5.
A population of 358 Navajo Indian children screened for serum cholinesterase variants failed to show the presence of either atypical or fluoride-resistant genes. This is the first significant anthropological observation of the absence of both variants in a native North American population.  相似文献   

6.
7.
Recent genetic and molecular biological analyses have revealed many forms of inherited channelopathies. Homozygous ataxic mice, tottering (tg) and leaner (tgla) mice, have mutations in the P/Q-type Ca2+ channel alpha1A subunit gene. Although their clinical phenotypes, histological changes, and locations of gene mutations are known, it remains unclear what phenotypes the mutant Ca2+ channels manifest, or whether the altered channel properties are the primary consequence of the mutations. To address these questions, we have characterized the electrophysiological properties of Ca2+ channels in cerebellar Purkinje cells, where the P-type is the dominant Ca2+ channel, dissociated from the normal, tg, and tgla mice, and compared them with the properties of the wild-type and mutant alpha1A channels recombinantly expressed with the alpha2 and beta subunits in baby hamster kidney cells. The most striking feature of Ca2+ channel currents of mutant Purkinje cells was a marked reduction in current density, being reduced to approximately 60 and approximately 40% of control in tg and tgla mice, respectively, without changes of cell size. The Ca2+ channel currents in the tg Purkinje cells showed a relative increase in non-inactivating component in voltage-dependent inactivation. Besides the same change, those of the tgla mice showed a more distinct change in voltage dependence of activation and inactivation, being shifted in the depolarizing direction by approximately 10 mV, with a broader voltage dependence of inactivation. In the recombinant expression system, the tg channel with a missense mutation (P601L) and one form of the two possible tgla aberrant splicing products, tgla (short) channel, showed a significant reduction in current density, while the other form of the tgla channels, tgla (long), had a current density comparable to the normal control. On the other hand, the shift in voltage dependence of activation and inactivation was observed only for the tgla (long) channel. Comparison of properties of the native and recombinant mutant channels suggests that single tottering mutations are directly responsible for the neuropathic phenotypes of reduction in current density and deviations in gating behavior, which lead to neuronal death and cerebellar atrophy.  相似文献   

8.
Ehlers-Danlos syndrome (EDS) type IV results from mutations in the COL3A1 gene, which encodes the constituent chains of type III procollagen. We have identified, in 33 unrelated individuals or families with EDS type IV, mutations that affect splicing, of which 30 are point mutations at splice junctions and 3 are small deletions that remove splice-junction sequences and partial exon sequences. Except for one point mutation at a donor site, which leads to partial intron inclusion, and a single base-pair substitution at an acceptor site, which gives rise to inclusion of the complete upstream intron into the mature mRNA, all mutations result in deletion of a single exon as the only splice alteration. Of the exon-skipping mutations that are due to single base substitutions, which we have identified in 28 separate individuals, only two affect the splice-acceptor site. The underrepresentation of splice acceptor-site mutations suggests that the favored consequence of 3' mutations is the use of an alternative acceptor site that creates a null allele with a premature-termination codon. The phenotypes of those mutations may differ, with respect to either their severity or their symptomatic range, from the usual presentation of EDS type IV and thus have been excluded from analysis.  相似文献   

9.
10.
11.
The oculocerebrorenal syndrome of Lowe (OCRL) is a multisystem disorder characterized by congenital cataracts, mental retardation, and renal Fanconi syndrome. The OCRL1 gene, which, when mutated, is responsible for OCRL, encodes a 105-kD Golgi protein with phosphatidylinositol (4,5)bisphosphate (PtdIn[4,5]P2) 5-phosphatase activity. We have examined the OCRL1 gene in 12 independent patients with OCRL and have found 11 different mutations. Six were nonsense mutations, and one a deletion of one or two nucleotides that leads to frameshift and premature termination. In one, a 1.2-kb genomic deletion of exon 14 was identified. In four others, missense mutations or the deletion of a single codon were found to involve amino acid residues known to be highly conserved among proteins with PtdIns(4,5)P2 5-phosphatase activity. All patients had markedly reduced PtdIns(4,5)P2 5-phosphatase activity in their fibroblasts, whereas the ocrl1 protein was detectable by immunoblotting in some patients with either missense mutations or a codon deletion but was not detectable in those with premature termination mutations. These results confirm and extend our previous observation that the OCRL phenotype results from loss of function of the ocrl1 protein and that mutations are generally heterogeneous. Missense mutations that abolish enzyme activity but not expression of the protein will be useful for studying structure-function relationships in PtdIns(4,5)P2 5-phosphatases.  相似文献   

12.
Brains from human neurofibromatosis type 1 (NF1) patients show increased expression of glial fibrillary acidic protein (GFAP), consistent with activation of astrocytes (M.L. Nordlund, T.A. Rizvi, C.I. Brannan, N. Ratner, Neurofibromin expression and astrogliosis in neurofibromatosis (type 1) brains, J. Neuropathol. Exp. Neurology 54 (1995) 588-600). We analyzed brains from transgenic mice in which the Nf1 gene was targeted by homologous recombination. We show here that, in all heterozygous mice analyzed, there are increased numbers of astrocytes expressing high levels of GFAP in medial regions of the periaqueductal gray and in the nucleus accumbens. More subtle, but significant, changes in the number of GFAP positive astrocytes were observed in the hippocampus in 60% of mutant mice analyzed. Astrocytes with elevated GFAP were present at 1 month, 2 months, 6 months and 12 months after birth. Most brain regions, including the cerebellum, basal ganglia, cerebral cortex, hypothalamus, thalamus, cortical amygdaloid area, and white matter tracts did not show any gliotic changes. No evidence of degenerating neurons was found using de Olmos' cupric silver stain. We conclude that Nf1/nf1 mice provide a model to study astrogliosis associated with neurofibromatosis type 1.  相似文献   

13.
Despite rapid progress in the physical characterization of murine and human genomes, little molecular information is available on certain regions, e.g., proximal mouse chromosome 11 (Chr 11) and human chromosome 2p (Chr 2p). We have localized the wobbler spinal atrophy gene wr to proximal mouse Chr 11, tightly linked to Rab1, a gene coding for a small GTP-binding protein, and Glnsps1, an intronless pseudogene of the glutamine synthetase gene. We have now used these markers to construct a 1.3-Mb yeast artificial chromosome (YAC) contig of the Rab1 region on mouse Chr 11. Four YAC clones isolated from two independent YAC libraries were characterized by rare-cutting analysis, fluorescence in situ hybridization (FISH), and sequence-tagged site (STS) isolation and mapping. Rab1 and Glns-ps1 were found to be only 200 kb apart. A potential CpG island near a methylated NarI site and a trapped exon, ETG1.1, were found between these loci, and a new STS, AHY1.1, was found over 250 kb from Rab1. Two overlapping YACs were identified that contained a 150-kb region of human Chr 2p, comprising the RAB1 locus, AHY1.1, and the human homologue of ETG1.1, indicating a high degree of conservation of this region in the two species. We mapped AHY1.1 and thus human RAB1 on Chr 2p13.4-p14 using somatic cell hybrids and a radiation hybrid panel, thus extending a known region of conserved synteny between mouse Chr 11 and human Chr 2p. Recently, the gene LMGMD2B for a human recessive neuromuscular disease, limb girdle muscular dystrophy type 2B, has been mapped to 2p13-p16. The conservation between the mouse Rab1 and human RAB1 regions will be helpful in identifying candidate genes for the wobbler spinal muscular atrophy and in clarifying a possible relationship between wr and LMGMD2B.  相似文献   

14.
The effect of heparin sulphate on the infection of CD4+ lymphocytes by recombinant HIV-1 clones pIIIB and by pIIIB/V3-BaL was investigated. It was demonstrated that heparin sulphate decreased the infectivity of CD4+ lymphocytes by the pIIIB virus stronger than by the pIIIB/V3-BaL clone, and that the effect of heparin was concentration-dependent. This was accompanied by an inhibition of binding of the monoclonal antibodies 447-52-D to the V3 region and G45-60 to the C4 region of oligomeric glycoprotein 120 (gp120). It has been concluded that the inhibitory effect of heparin sulphate on the infection of CD4+ lymphocytes by recombinant HIV-1 clones is mediated mainly by the V3 region of gp120. However, the C4 region contributes to the inhibitory effect of heparin sulphate.  相似文献   

15.
Van der Woude syndrome (VWS) is an autosomal dominant craniofacial disorder representing the most frequent form of syndromic cleft lip and palate. Other characteristic features are pits of the lower lip and hypodontia. The gene shows high penetrance and seems to play an important role in orofacial development determined by the tissues involved and their formation during different periods of craniofacial development. Although most individuals affected with VWS show Mendelian inheritance, one patient with a macroscopic deletion and multiple malformations including two primary features of VWS has been described in the literature, indicating hemizygosity is compatible with the VWS phenotype. We report here the allelic loss of a stable and highly polymorphic microsatellite (D1S205) from region 1q32-41 in one family with VWS. Classical manifestations of the syndrome superimposed on developmental delay in all affected members of the family, the absence of cytogenetic abnormalities, the reproducibility of the null allele with a new set of primers and close linkage of this marker in a total of 15 VWS families provide strong evidence that the first microdeletion involving the gene for VWS has been identified. Assuming 1 Mb of DNA per cM of genetic distance, the upper bound of the deletion size would amount to 4 Mb.  相似文献   

16.
BACKGROUND: Mutations that map to the KvLQT1 gene on human chromosome 11 account for more than 50% of inherited long QT syndrome (LQTS). It has been discovered recently that the KvLQT1 and minK proteins functionally interact to generate a current with biophysical properties similar to I(Ks), the slowly activating delayed-rectifier cardiac potassium current. Since I(Ks) modulates the repolarization of cardiac action potentials it is reasonable to hypothesize that mutations in KvLQT1 reduce I(Ks), resulting in the prolongation of cardiac action potential duration. METHODS AND RESULTS: We expressed LQTS-associated KvLQT1 mutants in Xenopus oocytes either individually or in combination with wild-type KvLQT1 or in combination with both wild-type KvLQT1 and minK. Substitutions of alanine with proline in the S2-S3 cytoplasmic loop (A177P) or threonine with isoleucine in the highly conserved signature sequence of the pore (T311I) yield inactive channels when expressed individually, whereas substitution of leucine with phenylalanine in the S5 transmembrane domain (L272F) yields a functional channel with reduced macroscopic conductance. However, all these mutants inhibit wild-type KvLQT1 currents in a dominant-negative fashion. CONCLUSIONS: In LQTS-affected individuals these mutations would be predicted to result in a diminution of the cardiac I(Ks) current, subsequent prolongation of cardiac repolarization, and an increased risk of arrhythmias.  相似文献   

17.
The Beckwith-Wiedemann syndrome (BWS) is marked by fetal organ overgrowth and conveys a predisposition to certain childhood tumors, including Wilms tumor (WT). The genetics of BWS have implicated a gene that maps to chromosome 11p15 and is paternally imprinted, and the gene encoding the cyclin-cdk inhibitor p57KIP2 has been a strong candidate. By complete sequencing of the coding exons and intron/exon junctions, we found a maternally transmitted coding mutation in the cdk-inhibitor domain of the KIP2 gene in one of five cases of BWS. The BWS mutation was an in-frame three-amino-acid deletion that significantly reduced but did not fully abrogate growth-suppressive activity in a transfection assay. In contrast, no somatic coding mutations in KIP2 were found in a set of 12 primary WTs enriched for cases that expressed KIP2 mRNA, including cases with and without 11p15.5 loss of heterozygosity. Two other 11p15.5 loci, the linked and oppositely imprinted H19 and IGF2 genes, have been previously implicated in WT pathogenesis, and several of the tumors with persistent KIP2 mRNA expression and absence of KIP2 coding mutations showed full inactivation of H19. These data suggest that KIP2 is a BWS gene but that it is not uniquely equivalent to the 11p15.5 "WT2" tumor-suppressor locus.  相似文献   

18.
The melanocortin receptor 1 (MC1R) plays a central role in regulation of eumelanin (black/brown) and phaeomelanin (red/yellow) synthesis within the mammalian melanocyte and is encoded by the classical Extension (E) coat color locus. Sequence analysis of MC1R from seven porcine breeds revealed a total of four allelic variants corresponding to five different E alleles. The European wild boar possessed a unique MC1R allele that we believe is required for the expression of a wild-type coat color. Two different MC1R alleles were associated with the dominant black color in pigs. MC1R*2 was found in European Large Black and Chinese Meishan pigs and exhibited two missense mutations compared with the wild-type sequence. Comparative data strongly suggest that one of these, L99P, may form a constitutively active receptor. MC1R*3 was associated with the black color in the Hampshire breed and involved a single missense mutation D121N. This same MC1R variant was also associated with EP, which results in black spots on a white or red background. Two different missense mutations were identified in recessive red (e/e) animals. One of these, A240T, occurs at a highly conserved position, making it a strong candidate for disruption of receptor function.  相似文献   

19.
Mutational analysis of the carboxy-terminal region of Escherichia coli HlyC was performed by site-directed mutagenesis. Replacement of residue Val-127 or Lys-129 reduced the activity of HlyC to about 30 or 60%, respectively, of that of the wild type, while replacement of Gly-128 reduced the activity to less than 1% of the wild-type level. Complete inactivation of HlyC was caused by a double mutation, replacement of Gly-128 with valine and of Lys-129 with isoleucine. Analysis of culture supernatants from mutants with reduced hemolytic activity by two-dimensional gel electrophoresis revealed the production and simultaneous secretion of nonacylated, monoacylated, and fully acylated HlyA forms, demonstrating impairment of the acylation reaction, possibly due to a decreased affinity of HlyC for the individual HlyA acylation sites.  相似文献   

20.
To detect genetic loci responsible for stroke susceptibility, we produced 107 male F2 progenies crossed between stroke-prone spontaneously hypertensive rats (SHRSP/Izm) and normotensive Wistar Kyoto rats (WKY/Izm) and followed them up until they developed cerebral stroke. One hundred and twenty-five simple sequence repeat (SSR) markers were analyzed in these F2 rats. Nine of 107 F2 rats suffered from macroscopically overt stroke. In these 9 rats, the segregation ratio of 3 genotypes at 6 SSR marker loci on chromosomes 2, 4, 9, and 10 was highly distorted from the expected value (the observed sp/sp:sp/wky:wky/ wky ratio was either 6:3:0 or 6:2:1, while the expected was 1:2:1, p < 0.01 by chi 2 test). Further, the brain weight was significantly heavier (p < 0.001) in the F2 rats suffering from stroke, suggesting that the brain weight was a parameter for stroke. The brain weight of F2 rats cosegregated with D4Mit19, D4Mgh7, and D4Mgh8 (p = 0.0015, 0.0014, and 0.0040 by ANOVA, respectively) on chromosome 4 supporting genetic effects of this genetic loci on the pathogenesis of cerebral stroke. Blood pressure did not cosegregate with these markers on chromosome 4. These results suggest that a region on chromosome 4, independently of hypertension, determines genetic susceptibility to cerebral stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号