首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
AVeryEfficientApproachfortheSynthesisof2-DRecursiveFanFiltersZhuWeiping(DepartmentofTelecommunicationEngineering,NanjingUnive...  相似文献   

2.
基于巴特沃斯逼近的二维IIR数字滤波器的设计   总被引:1,自引:0,他引:1  
朱卫平 《通信学报》1996,17(2):98-105
本文给出了一种基于巴特沃斯逼近的二维IIR数字滤波器的设计方法,得到了由基本的全通节级联,并联实现的各种二维滤波器函数,包括,镜象对称互补滤波器,扇形滤波器和具有任意矩形通、阻带的滤波器,结果表明,这种实现结构具有通有灵敏度低、滤波器系数少的优点,并且由于巴特沃斯逼近的最大平坦性,得到的滤波器具有良好的相位特性。  相似文献   

3.
This paper develops a theory for the application of fan filters to moving objects. In contrast to previous treatments of the subject based on the 3-D Fourier transform, simplicity and insight are achieved by using the 3-D Radon transform. With this point of view, the Radon transform decomposes the image sequence into a set of plane waves that are parameterized by a two-component slowness vector. Fan filtering is equivalent to a multiplication in the Radon transform domain by a slowness response function, followed by an inverse Radon transform. The plane wave representation of a moving object involves only a restricted set of slownesses such that the inner product of the plane wave slowness vector and the moving object velocity vector is equal to one. All of the complexity in the application of fan filters to image sequences results from the velocity-slowness mapping not being one-to-one; therefore, the filter response cannot be independently specified at all velocities. A key contribution of this paper is to elucidate both the power and the limitations of fan filtering in this new application. A potential application of 3-D fan filters is in the detection of moving targets in clutter and noise. For example, an appropriately designed fan filter can reject perfectly all moving objects whose speed, irrespective of heading, is less than a specified cut-off speed, with only minor attenuation of significantly faster objects. A simple geometric construction determines the response of the filter for speeds greater than the cut-off speed.  相似文献   

4.
Two- and three-dimensional (2-D and 3-D) depth migration can be performed using 1-D and 2-D extrapolation digital filters, respectively. The depth extrapolation is done, one frequency at a time, by convolving the seismic wavefield with a complex-valued, frequency- and velocity-dependent, digital filter. This process requires the design of a complete set of extrapolation filters: one filter for each possible frequency-velocity pair. Instead of independently designing the frequency- and velocity-dependent filters, an efficient procedure is introduced for designing a complete set of 1-D and 2-D extrapolation filters using transformations. The problem of designing a desired set of migration filters is thus reduced to the design of a single 1-D filter, which is then mapped to produce all the desired 1-D or 2-D migration filters. The new design procedure has the additional advantage that both the 1-D and 2-D migration filters can be realized efficiently and need not have their coefficients precomputed or tabulated  相似文献   

5.
A quadratic programming (QP) approach for determining the coefficients of the McClellan transform is presented for the design of 2-D FIR digital filters. Three features of the proposed method are as follows. First, the transform parameters are determined by minimising the integration of the squared errors along the desired contour. Second, a set of linear constraints are incorporated into the QP formulation such that the conventional scaling problem of the transform can be avoided. Third, the optimal cutoff frequencies of a 1-D prototype filter are obtained directly from the QP solution. Several design examples, including fan filters, elliptic filters, diamond filters and bandpass filters, are illustrated to demonstrate the effectiveness of the QP method  相似文献   

6.
The solution to minimax design of 2-D finite-impulse response filter is not necessarily unique. This paper presents a sequential constrained least-square (SCLS) method to obtain a minimax filter with least total squared error. The method converts the minimax design into a series of constrained least-square problems with the same cost function but different magnitude constraints. By producing the sequence of magnitude error bounds with a binary search, the SCLS method has an exponential convergence rate. Design examples of circular, diamond, and fan filters, and comparison with existing methods show that the SCLS method is efficient and absolutely convergent. The resulted filter is not only a minimax filter but also has least total squared error among minimax filters.  相似文献   

7.
具有任意角度的二维扇形FIR数字滤波器的设计   总被引:1,自引:0,他引:1  
扇形数宇滤波器由于其良好的方向性而得到广泛的应用.本文导出了一组利用McClellan变换法设计二维零相位扇形数字滤波器的公式.利用该组公式设计的扇形数字滤波器的形状在均方意义下是最佳的.由于设计公式化,避免了设计中的优化过程,因而设计过程简单,设计所需的时间少。  相似文献   

8.
A new method to choose the coefficients of the McClellan transformation is developed. The coefficients are obtained by using both analytic and nonlinear optimization approaches. The transformation using the proposed method has much better approximation performance for circular symmetry than the existing methods, especially when the cutoff frequency of the 2-D filter is very large. The proposed method also applies to choose the transformation coefficients to approximate elliptic contours. Two design examples of 2-D FIR digital filters demonstrate the good performance of the proposed method.  相似文献   

9.
A VLSI architecture for the on-chip realization of a first-order two-dimensional (2-D) or three-dimensional (3-D) infinte impulse response (IIR) fully multiplexed frequency-planar filter module (FMFPM) is proposed. Such filter modules may be used in 3-D video processing and 2-D/3-D plane-wave filtering using sensor arrays. The proposed FMFPM can potentially be used as a 2-D/3-D IIR building block circuit for the on-chip realization of second- (or higher) order frequency-planar filters, 3-D IIR beam filters, 2-D IIR fan filter banks and 3-D IIR cone filter banks.  相似文献   

10.
In designing two-dimensional (2-D) digital filters in the frequency domain, an efficient technique is to first decompose the given 2-D frequency domain design specifications into one-dimensional (1-D) ones, and then approximate the resulting 1-D magnitude specifications using the well-developed 1-D filter design techniques. Finally, by interconnecting the designed 1-D filters one can obtain a 2-D digital filter. However, since the magnitude responses of digital filters must be nonnegative, it is required that the decomposition of 2-D magnitude specifications result in nonnegative 1-D magnitude specifications. We call such a decomposition the nonnegative decomposition. This paper proposes a nonnegative decomposition method for decomposing the given 2-D magnitude specifications into 1-D ones, and then transforms the problem of designing a 2-D digital filter into that of designing 1-D filters. Consequently, the original problem of designing a 2-D filter is significantly simplified.  相似文献   

11.
The singular-value decomposition (SVD) technique is investigated for the realization of a general two-dimensional (2-D) linear-phase FIR filter with an arbitrary magnitude response. A parallel realization structure consisting of a number of one-dimensional (1-D) FIR subfilters is obtained by applying the SVD to the impulse response of a 2-D filter. It is shown that by using the symmetry property of the 2-D impulse response and by developing an appropriate unitary transformation, an SVD yielding linear-phase constituent 1-D filters can always be obtained so that the efficient structures of the 1-D linear-phase filters can be exploited for 2-D realization. It is shown that when the 2-D filter to be realized has some specified symmetry in its magnitude response, the proposed SVD realization would yield a magnitude characteristic with the same symmetry. An analysis is carried out to obtain tight upper bounds for the errors in the impulse response as well as in the frequency response of the realized filter. It is shown that the number of parallel sections can be reduced significantly without introducing large errors, even in the case of 2-D filters with nonsymmetric magnitude response  相似文献   

12.
Lin  Z. Bruton  L.T. Bartley  N.R. 《Electronics letters》1988,24(22):1361-1362
Shows for the design of quadrantally symmetric 2-D fan filters that it is unnecessarily restrictive to prescribe exact quadrantal symmetry, which requires that the denominator of the Z-transform transfer function be product-separable. Superior approximately symmetric fan filter designs can be achieved using nonseparable denominators  相似文献   

13.
A novel structure using recursive nonsymmetric half-plane (NSHP) digital allpass filters (DAFs) is presented for designing 2-D recursive digital filters. First, several important properties of 2-D recursive DAFs with NSHP support regions for filter coefficients are investigated. The stability of the 2-D recursive NSHP DAFs is guaranteed by using a spectral factorization-based algorithm. Then, the important characteristics regarding the proposed novel structure are discussed. The design problem of 2-D recursive digital filters using the novel structure is considered. We formulate the problem by forming an objective function consisting of the weighted sum of magnitude, group delay, and stability-related errors. A design technique using a trust-region Newton-conjugate gradient method in conjunction with the analytic derivatives of the objective function is presented to efficiently solve the resulting optimization problem. The novelty of the presented 2-D structure is that it possesses the advantage of better performance in designing a variety of 2-D recursive digital filters over existing 2-D filter structures. Finally, several design examples are provided for conducting illustration and comparison.  相似文献   

14.
The digital filters with adjustable frequency-domain characteristics are called variable filters. Variable filters are useful in the applications where the filter characteristics are needed to be changeable during the course of signal processing. In such cases, if the existing traditional constant filter design techniques are applied to the design of new filters to satisfy the new desired characteristics when necessary, it will take a huge amount of design time. So it is desirable to have an efficient method which can fast obtain the new desired frequency-domain characteristics. Generally speaking, the frequency-domain characteristics of variable filters are determined by a set of spectral parameters such as cutoff frequency, transition bandwidth and passband width. Therefore, the characteristics of variable filters are the multi-dimensional (M-D) functions of such spectral parameters. This paper proposes an efficient technique which simplifies the difficult problem of designing a 2-D variable filter with quadrantally symmetric magnitude characteristics as the simple one that only needs the normal one-dimensional (1-D) constant digital filter designs and 1-D polynomial approximations. In applying such 2-D variable filters, only varying the part of 1-D polynomials can easily obtain new desired frequency-domain characteristics.  相似文献   

15.
In this paper, the technique of McClellan transformation is applied to design variable 2-D FIR digital filters. Compared with the conventional transformation, the 2-D transformation subfilter and the 1-D prototype filter are designed such that their frequency characteristics are adjustable. Moreover, they are tunable by the same variable parameter, so the variable characteristics of 1-D prototype filters are coincident with those of 2-D subfilters. Several examples, including variable fan filters, variable circularly symmetric filters, and variable elliptically symmetric filters with arbitrary orientation, are presented to demonstrate the effectiveness and the flexibility of the presented method.   相似文献   

16.
In this paper, a 2-D Farrow structure is proposed and used to implement variable fractional-delay (VFD) 2-D FIR digital filters. Compared with the existing literature, the desired response of a VFD 2-D digital filter is analyzed in detail, and it is found that there are four types of 2-D symmetric/antisymmetric sequences that need to be used for the design of VFD 2-D FIR digital filters. Moreover, due to the orthogonality among the approach functions, the four types of 2-D sequences can be determined independently, such that the dimension for each computation can be reduced drastically. For simplicity, only the designs of even–even- and odd–odd-order VFD 2-D filters are presented in this paper, and the other cases can be achieved in the same manner. To reveal the coefficient characteristics, the symmetric/antisymmetric properties of filter coefficients and the relationships between coefficients are all tabulated. Also, design examples such as nonseparable circularly symmetric low-pass VFD filters are presented to demonstrate the effectiveness of the proposed method.   相似文献   

17.
The most commonly used 2-D filter banks are separable filter banks, which can be obtained by cascading two 1-D filter banks in the form of a tree. The supports of the analysis and synthesis filters in the separable systems are unions of four rectangles. The natural nonseparable generalization of such supports are those that are unions of four parallelograms. We study four parallelogram filter banks, which is the class of 2-D filter banks in which the supports of the analysis and synthesis filters consist of four parallelograms. For a given a decimation matrix, there could be more than one possible configuration (the collection of passbands of the analysis filters). Various types of configuration are constructed for four-parallelogram filter banks. Conditions on the configurations are derived such that good design of analysis and synthesis filters are possible. We see that there is only one category of these filter banks. The configurations of four-parallelogram filter banks in this category can always be achieved by designing filter banks of low design cost  相似文献   

18.
Localized 2-D filter-based linear coherent noise attenuation   总被引:1,自引:0,他引:1  
A novel localized two-dimensional (2-D) filter is proposed. The proposed filter derived from the frequency-wavenumber filter and Radon transform filter, with the filtering operation applied at the stage of Fourier projection, has good local property and less filtering distortion. An example of the proposed method to attenuate linear coherent noise in a seismic image is given. Comparisons of the results between our method and the conventional 2-D filters (including frequency-wavenumber filter and Radon transform filter) show that the new method outperforms both frequency-wavenumber method and Radon transform method.  相似文献   

19.
A Hopfield-type neural network for the design of 2-D FIR filters is proposed. The network is contrived to have an energy function that coincides with the sum-squared error of the approximation problem at hand and by ensuring that the energy is a monotonic decreasing function of time, the approximation problem can be solved. Two solutions are obtained. In the first the 2-D FIR filter is designed on the basis of a specified amplitude response and in the second a filter that has specified maximum passband and stopband errors is designed. The network has been simulated with HSPICE and design examples are included to show that this is an efficient way of solving the approximation problem for 2-D FIR filters. The neural network has high potential for implementation in analog VLSI and can, as a consequence, be used in real-time applications.  相似文献   

20.
We describe a recursive algorithm for anisotropic 2-D Gaussian filtering, based on separating the filter into the cascade of three, rather two, 1-D filters. The filters operate along axes obtained by integer horizontal and/or vertical pixel shifts. This eliminates interpolation, which removes spatial inhomogeneity in the filter, and produces more elliptically shaped kernels. It also results in a more regular filter structure, which facilitates implementation in DSP chips. Finally, it improves matching between filters with the same eccentricity and width, but different orientations. Our analysis and experiments indicate that the computational complexity is similar to an algorithm that operates along two axes (<11 ms for a 512 x 512 image using a 3.2-GHz Pentium 4 PC). On the other hand, given a limited set of basis filter axes, there is an orientation dependent lower bound on the achievable aspect ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号