首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以酸性多孔ZSM-5沸石(HZSM-5-M)和高比表面积的氧化硅(SiO2)为载体,采用等体积浸渍法制备了负载Ni2P催化剂(Ni2P/HZSM-5-M和Ni2P/SiO2),对比研究了它们在苯乙炔选择性加氢反应中的催化性能。采用XRD、N2吸附-脱附、NH3-TPD、H2-TPR、SEM和TEM对载体及其负载的Ni2P催化剂进行了表征。催化剂活性结果为:当反应时间为2 h,苯乙炔在Ni2P/HZSM-5-M催化剂的转化率为98.5%,而在Ni2P/SiO2催化剂上仅为45.6%。说明Ni2P/HZSM-5-M催化剂的加氢活性显著高于Ni2P/SiO2催化剂。这是因为,与Ni2P/SiO2催化剂相比,在Ni2P/HZSM-5-M催化剂上形成了小颗粒的Ni2P活性相。同时,Ni2P/HZSM-5-M催化剂的活性具有良好的重复性。  相似文献   

2.
以KBH4为还原剂,用浸渍-还原法制备了Ni-B/SiO2催化剂,并用于硝基苯催化加氢制苯胺的反应,讨论了制备条件(Ni、B用量及焙烧温度)及反应条件(压力、温度)对硝基苯的转化率及苯胺选择性的影响。结果表明,Ni-B/SiO2催化剂具有很高的催化活性。适当增加Ni和B的用量,可以提高催化剂对硝基苯的转化率和转化频率及苯胺的选择性。催化剂前驱体的焙烧温度在453K时,硝基苯的转化率可达到98.5%,对苯胺选择性为97.0%。过高的焙烧温度不利于催化剂活性的提高。适当提高加氢反应压力以及温度,可以提高催化剂的加氢活性及对苯胺的选择性。  相似文献   

3.
1,2-环己二醇脱氢制邻苯二酚Ni-Na/硅藻土催化剂的研究   总被引:1,自引:0,他引:1  
采用浸渍法制备了一系列Ni-Na/硅藻土催化剂,考察了活性组分Ni含量、助剂、载体、浸渍方式等因素对催化剂活性选择性的影响.以硅藻土为载体,活性组分Ni含量30%,助剂Na含量1%~2%,采用分步浸渍法制备Ni-Na/硅藻土催化剂效果最好.环己二醇转化率可达100%,邻苯二酚选择性可达96.7%.  相似文献   

4.
采用等体积浸渍法将Ni分别负载在USY、ZSM-5、SBA-15、Al2O3和SiO2 5种载体上制备Ni质量分数为17%的负载型镍基催化剂,以1,4-丁炔二醇(BYD)加氢制1,4-丁二醇(BDO)为探针反应考察其催化性能。通过X射线衍射、N2吸附-脱附、H2程序升温还原及NH3程序升温脱附对催化剂进行表征。结果表明,在不同载体的催化剂作用下,BYD的转化率均可达到99%以上,但BDO的选择性却有很大差异;其他条件相同时,Ni/SBA-15催化剂反应5 h时BDO的选择性达到83.1%,1,4-丁烯二醇(BED)的选择性为16.6%,且2-羟基四氢呋喃(HTHF)的选择性很低,这与Ni/SBA-15具有较大的比表面积和平均孔径、较弱的酸性和良好的活性金属组分镍分散性有关。进而筛选出在低温低压条件下BYD一步加氢制备BDO的镍基催化剂Ni/SBA-15。  相似文献   

5.
于贺华 《河南化工》2012,(17):38-42
以硅酸钠为原料用化学沉淀法制备了SiO2,用浸渍法制备了Ni-La/SiO2催化剂前体,然后用H2气还原得到了Ni-La/SiO2催化剂。分别用XRD、SEM和TEM、N2吸附—脱附等技术对载体和催化剂进行了表征,结果表明:掺杂镧可以促进镍活性中心的形成以及有效防止Ni颗粒的团聚。考察了不同Ni/La比的催化剂对大豆油非选择性加氢的催化性能,优化了大豆油加氢条件,大豆油的碘值可由130降低至1.6。  相似文献   

6.
载体对非晶态催化剂的氯代硝基苯加氢性能影响   总被引:1,自引:0,他引:1  
房永彬 《工业催化》2005,12(Z1):535-539
以纳米碳管(CNTs)、γ-Al2O3、活性炭(AC)、SiO2为载体,Pt、Sn为活性组分,采用浸渍-化学还原法制备了负载Pt-Sn双金属非晶态催化剂,采用XRD、SEM、SAED、EDS等技术手段对催化剂进行了表征,明确了催化剂的非晶态性质、结构形态、粒子大小和元素组成等.以氯代硝基苯液相加氢为目标反应,对各催化剂的催化性能进行了评价.结果表明负载Pt-Sn非晶态催化剂在氯代硝基苯加氢反应中具有较好的活性和良好的选择性,其中以CNTs为载体的非晶态催化剂可使三种氯代硝基物加氢转化率达到99.9%,加氢脱氯率小于1.2%.从载体的微观结构、金属-载体相互作用、活性组分在载体表面的几何效应和电子效应等方面对载体响氯代硝基苯加氢性能进行了讨论.  相似文献   

7.
马庆丰  李凝  吕义浩  刘伟 《工业催化》2010,18(10):33-36
采用溶胶-凝胶法制备了Al_2O_3、ZrO_2和ZrO_2/Al_2O_3载体,采用浸渍法制备了NiO/Al_2O_3、NiO/ZrO_2和NiO/ZrO_2/Al_2O_3催化剂,采用H_2-TPR、NH_3-TPD和原位红外等技术对催化剂的还原性能、表面酸特性、α-蒎烯的吸附性及比表面积等进行了表征。结果表明,负载型ZrO_2/Al_2O_3复合载体与活性物种形成较强的相互作用,稳定活性中心,复合载体Ni催化剂表面酸强度介于Ni/ZrO_2和Ni/Al_2O_3之间,α-蒎烯能与Ni/ZrO_2/Al_2O_3催化剂形成适宜化学吸附态。在α-蒎烯加氢反应中,Ni/ZrO_2/Al_2O_3催化剂表现出较好的催化活性和选择性,α-蒎烯转化率为84%,蒎烷选择性为83%。  相似文献   

8.
为提高负载催化剂中金属的分散性,以含EDTA螯合剂的浸渍液浸渍制备了NiW/Al2O3加氢处理脱氮催化剂,其中络合剂与Ni的摩尔比为1∶1,考察了EDTA对活性金属分散性及加氢脱氮性能的影响。通过BET、XRD、XPS和HRTEM表征发现,EDTA的引入,可以提高Ni和W在氧化铝载体表面的分散性,W/Al原子比从0.096提高到0.127。EDTA的引入,同时减弱了活性金属与氧化铝载体间的相互作用,有利于形成堆积程度较高的WS2相。EDTA的引入,可以大幅提高催化剂对喹啉的加氢脱氮活性,相对于传统方法制备的催化剂,其加氢脱氮活性可提高27%。  相似文献   

9.
《化工进展》2012,31(5)
采用浸渍-沉淀法制备Al2O3-ZrO2复合氧化物,通过程序升温还原法制备Ni2P/Al2O3-ZrO2催化剂。运用X射线衍射、N2吸附-脱附、X射线光电子能谱技术对载体和催化剂进行表征,并以噻吩加氢脱硫、吡啶加氢脱氮反应为探针考察复合氧化物对Ni2P催化剂加氢活性的影响。结果表明,在Al2O3表面引入少量ZrO2,既保持了γ-Al2O3大比表面积的结构优势,又减少了P或Ni与Al2O3表面的接触,促进Ni2P的形成。载体中ZrO2质量分数20%的Ni2P/Al2O3-ZrO2催化剂活性最高,载体焙烧温度过高会导致催化剂活性下降。  相似文献   

10.
李锋  宋华  张华阳 《化工进展》2012,(5):1047-1051
采用浸渍-沉淀法制备Al2O3-ZrO2复合氧化物,通过程序升温还原法制备Ni2P/Al2O3-ZrO2催化剂。运用X射线衍射、N2吸附-脱附、X射线光电子能谱技术对载体和催化剂进行表征,并以噻吩加氢脱硫、吡啶加氢脱氮反应为探针考察复合氧化物对Ni2P催化剂加氢活性的影响。结果表明,在Al2O3表面引入少量ZrO2,既保持了γ-Al2O3大比表面积的结构优势,又减少了P或Ni与Al2O3表面的接触,促进Ni2P的形成。载体中ZrO2质量分数20%的Ni2P/Al2O3-ZrO2催化剂活性最高,载体焙烧温度过高会导致催化剂活性下降。  相似文献   

11.
以四硫代钼酸铵溶液和硝酸镍溶液为浸渍液,根据活性组分Ni和Mo浸渍顺序的不同,采用真空饱和浸渍法制备了MN系列和NM系列 NiMoS/γ-Al2O3催化剂。在固定床加氢中试反应装置上研究了NiMoS/γ-Al2O3催化剂对二苯并噻吩加氢反应的催化性能,结果表明,NiMoS/γ-Al2O3催化剂对二苯并噻吩加氢反应具有良好的活性和选择性。Ni助剂的加入,有利于二苯并噻吩加氢反应的活性和选择性。MN-0.3为最优NiMoS/γ-Al2O3催化剂。在空速10 h-1、反应压力2.0 MPa、氢油体积比300∶1、氢气预处理温度320 ℃和反应温度300 ℃条件下,催化剂对二苯并噻吩加氢反应转化率达83.9%,加氢反应活性较高。  相似文献   

12.
为了获得高水热稳定的负载Ni催化剂,延长催化剂在含水液相体系中的使用寿命,以不同温度焙烧的SiO2-Al2O3为载体,采用浸渍法制备Ni/SiO2-Al2O3催化剂,通过吡啶-原位傅立叶变换红外光谱、X射线衍射、NH3-程序升温脱附和H2-程序升温还原等方法进行表征,以水相1,4-丁炔二醇加氢为探针反应,研究载体焙烧温度对Ni/SiO2-Al2O3催化剂催化加氢性能及含水体系中稳定性的影响。结果表明,在(400~800) ℃,随着载体焙烧温度升高,活性组分Ni存在状态及催化剂加氢活性变化较小,但催化剂的水热稳定性下降,造成这一现象的原因是随着载体焙烧温度升高,载体表面SiO2聚集,暴露的Al3+增加,载体水合程度增大。载体焙烧温度400 ℃时,Ni/SiO2-Al2O3催化剂表现出最佳的水热稳定性。  相似文献   

13.
蒋丽娟  李来平  张文钲 《工业催化》2014,22(12):905-908
复合多金属硫化物(MMS)催化剂主要用于原油的深度加氢,用于生产高十六烷值、低硫和低芳族化合物柴油。MMS催化剂包含NiMoS、NiWS、NiMoO、NiWO、NiMoWS和ZnMoWS催化剂等。综述MMS催化剂中二元复合金属硫化物催化剂和三元复合金属硫化物催化剂的制备方法,采用二步法即添加有机物作孔成形剂先制得催化剂前驱体,再由前驱体制得的MMS催化剂结构更松散,具有较大的比表面积(90 m2·g-1)和大孔容(大于0.3 cm3·g-1),因而具有更好的催化活性。对比不同MMS催化剂对重质柴油、焦油等的加氢裂解、加氢脱硫和加氢脱氮性能,认为NiMoW三元复合金属硫化物催化剂(50%Ni25%Mo25%W)的活性最优。  相似文献   

14.
采用浸渍法制备了不同种类助剂改性的Ni-M/γ-Al2O3催化剂,通过XRD、低温氮气物理吸附和FT-IR等手段对改性前后的催化剂进行表征,并考察催化剂在1,4-丁炔二醇加氢反应中的活性和抗水合性能。结果表明,在所选助剂中,SiO2的引入使催化剂维持了较高的加氢活性,同时,显著提高了Ni/γ-Al2O3催化剂的抗水合性能,γ-Al2O3表面Si-O-Al的形成是SiO2抑制γ-Al2O3发生水合的直接原因。  相似文献   

15.
选择Ni/W为加氢金属组分,金属改性Y和Al2O3作为载体,制备不同金属溶液处理加氢裂化催化剂,采用加氢金属溶液调节NH4Y分子筛的物化性质,考察金属预处理方式对催化剂物性结构及加氢裂化反应性能的影响。结果表明,经金属溶液处理后,催化剂活性和柴油选择性比非金属溶液处理的催化剂均有显著提高。NH4Y分子筛经过偏钨酸铵溶液处理后,W^6+进入分子筛孔道或笼内,与酸性位形成较强的离子键,降低催化剂的B酸,同时使金属离子与酸性位点间的距离适当减小,使得费托蜡加氢裂化在高转化率下得到较好的柴油选择性。  相似文献   

16.
采用浸渍法制备Ni-La2O3/SiO2-Al2O3催化剂,对催化剂进行不同温度还原,并利用XRD、H2-TPR等表征,考察了还原温度对催化剂反应性能的影响.结果表明,低于400℃的还原条件下,NiO未被有效还原,催化剂表现出低的加氢活性;还原温度在450 ~ 550℃时,由于La2O3抑制了高温还原导致的活性组分Ni聚集长大,催化剂保持了高的加氢活性.  相似文献   

17.
采用固定床反应器研究了Ni/Al2O3上CS2对裂解汽油原料油中主要化合物芳烃、单烯烃和共轭烯烃加氢活性的影响,其对加氢抑制的顺序为:芳烃单烯烃共轭烯烃。XRD、XPS和IR表征分析表明,Ni/Al2O3催化剂失活的可能原因是CS2吸附在活性相表面,部分CS2碳硫键断裂发生氢解反应产生H2S和CH4,H2S与镍活性中心作用形成镍硫化合物。原料油中部分CS2吸附在催化剂表面,催化剂对共轭烯烃加氢也失去活性。  相似文献   

18.
制备以SiO_2-Al_2O_3为载体、W为活性组分的加氢精制W/SiO_2-Al_2O_3催化剂,并考察了温度、氢压、氢油体积比和空速的影响。研究了在W/SiO_2-Al_2O_3催化剂作用下,润滑油基础油的加氢精制效果。结果表明,在精制温度260℃、氢压9.0 MPa、氢油体积比700:1和空速1.25 h^(-1)条件下,氮含量从63.4μg·g^(-1)降至0.9 μg·g^(-1),硫含量从110.2μg·g^(-1)降至0.32 μg·g^(-1),液体油收率92.7%,运动黏度、闪点、凝点与原料油相比变化不大,加氢精制效果较理想。  相似文献   

19.
This report aims to reduce the benzene in a mixture of benzene and toluene as a model reaction using catalytic hydrogenation. In this research, we developed a series of catalysts with different supports such as Ni/HMS, Ni/HZSM-5, Ni/HZSM5-HMS, Ni/Al_2O_3 and Ni/SiO_2. Kinetic of this reaction was investigated under various hydrogen and benzene pressures. For more study, two kinetic models have also been selected and tested to describe the kinetics for this reaction. Both used models, the power law and Langmuir–Hinshelwood, provided a good fit toward the experimental data and allowed to determine the kinetic parameters. Among these catalysts, Ni/Al_2O_3 showed the maximum benzene conversion(99.19%) at 130 °C for benzene hydrogenation. The lowest toluene conversion was observed for Ni/SiO_2. Furthermore, this catalyst presented high selectivity to benzene(75.26%)at 130 °C. The catalytic performance(activity, selectivity and stability) and kinetics evaluations were shown that the Ni/SiO_2 is an effective catalyst to hydrogenate benzene. It seems that the surface properties particularly pore size are effective parameter compared to other factors such as acidity and metal dispersion in this process.  相似文献   

20.
The hydrogenation of m-dinitrobenzene to m-phenylenediamine in liquid phase was studied with the nickel catalysts supported on SiO2, TiO2, γ-Al2O3, MgO and diatomite carders. Based on the experiments of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), temperature-programmed desorption of hydrogen (H2-TPD) and activity evaluation, the physico-chemical and catalytic properties of the catalysts were investigated. Among the catalysts tested, the SiO2 supported nickel catalyst showed the highest activity and selectivity towards m-phenylenediamine, over which 97.3% m-dinitrobenzene conversion and 95.1% m-phenylenediamine yield were obtained at 373K under hydrogen pressure of 2.6MPa after reaction for 6 h when using ethanol as solvent. Although TiO2 and diatomite supported nickel catalysts also presented high activity, they had lower selectivity towards m-phenylenediamine. As for γ-Al2O3 and MgO supported catalysts were almost inactive for the object reaction. It was shown that both the activity and selectivity of the catalysts were strongly depended on the interaction between nickel and the support. The higher activities of Ni/SiO2, Ni/TiO2 and Ni/diatomite could be attributed to the weaker metal-support interaction, on which Ni species presented as crystallized Ni metal particles. On the other hand, there existed strong metal-support interaction in Ni/MgO and Ni γ-Al2O3, which causes these catalysts more difficult to be reduced and the availability of Ni active sites decreased, resulting in their low catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号