首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 337 毫秒
1.
卢锋  田铭兴 《江苏电器》2013,(11):39-44
介绍了一种基于FBD法的有源电力滤波器谐波电流检测方法,分析了基波有功电流和基波无功电流、谐波电流、基波负序电流和任意次谐波电流等的检测原理。该方法采用锁相环产生参考电压,将负载电流投影到参考电压上,通过低通滤波器可以准确检测出各种电流分量,并且在电网电压畸变情况下,该方法同样适用。Matlab/Simulink仿真结果证实了该方法的正确性和有效性。  相似文献   

2.
为了使有源滤波器快速有效地检测出三相四线制电力系统中的谐波和无功电流,提出了一种基于FBD(Fryze-Buchholz-Dpenbrock)法的改进的电流检测方法。该方法利用抽样降低系统计算量,并用一个陷波滤波器和一个高截止频率的低通滤波器串联代替一个低截止频率的低通滤波器提取直流分量,提高了检测方法的实时性。该方法可以在系统电压畸变的情况下检测出三相电流的基波正序有功电流分量、基波正序无功电流分量、不对称电流及谐波电流分量。Matlab仿真结果表明了该方法的正确性和有效性。  相似文献   

3.
一种改进无锁相环FBD谐波和无功电流检测方法   总被引:1,自引:0,他引:1       下载免费PDF全文
谐波和无功电流的准确检测,是影响有源电力滤波器补偿性能的关键技术之一。针对传统FBD法在检测谐波和无功电流上的不足,提出一种改进无锁相环FBD检测方法。该方法利用基波正序电压提取环节代替锁相环电路,对两路线电压进行处理,得到与基波正序电压同频同相的三相参考电压信号,进而求取补偿指令电流。检测结果不受电网电压不对称和畸变的影响,消除了锁相环引起的误差。仿真分析和实验结果验证了该方法的正确性和可行性。  相似文献   

4.
FBD法在三相四线制系统电流实时检测中应用   总被引:4,自引:3,他引:1  
为了快速、有效地检测出三相四线制电力系统中的谐波、负序和零序电流,提出了一种基于FBD法的电流实时检测方法。该方法的关键是利用参考电压进行投影变换,利用参考电压和三相电流求得电路等效电导,再利用等效电导求得指令电流,从而使检出电流与参考电压波形相位保持一致,可以在系统电压畸变的情况下检测出三相电流的基波正序有功、无功电流分量,不对称电流以及谐波电流分量,拓展了FBD法的应用范围。与基于瞬时无功功率理论的电流检测方法相比,该方法没有复杂的Park变换和dq变换,可以更加快速有效地进行电流实时检测。仿真结果表明了该电流检测方法的正确性和有效性。  相似文献   

5.
基于瞬时无功功率理论的四相输电谐波电流检测方法   总被引:27,自引:13,他引:27  
该文提出了基于瞬时无功功率理论的四相输电谐波电流检测方法。该方法首先将a、b、c、d四相电路分解成ab和cd两组,然后运用ip、q对每一组的谐波电流分别进行计算,求出每相谐波电流。通过对电容器直流侧电压和有源滤波器输出电压进行控制,达到有效减少基波有功电流和基波无功电流的检测误差,从而实现了有效减少谐波电流检测误差的目标。该方法与三相电路谐波电流检测方法相比省去了三相变两相和两相还原成三相环节,与单相电路谐波电流检测方法相比省去了构筑三相电路环节。该方法将瞬时无功功率理论对谐波检测的范围曲三相、单相电路扩展到了四相电路,具有原理简单,检测精度高和稳定性好等特点。计算机仿真和实验结果均表明了该文提出的方法是切实可行的。  相似文献   

6.
基于FBD法的三相电力系统电流检测方法的应用   总被引:14,自引:2,他引:12  
为了更好地进行谐波和无功功率的补偿与控制,对FBD(Fryze-Buchholz Dpenbrock)法的定义进行了完善,并给出了补偿电流检测的直接法和间接法,在三相电力系统中对FBD间接法进行了推广研究,利用参考电压进行投影变换,不仅可以检测出功率电流和零功率电流,还可以检测出基波有功电流、基波无功电流、谐波电流以及任意次谐波电流等,大大拓展了FBD法的应用范围和领域。MATLAB仿真和实验结果表明了所定义和推广的电流检测方法的正确性和有效性。  相似文献   

7.
基于理论推导和分析,指出了在三相电压不对称时,应用瞬时无功功率理论检测谐波和基波正序有功及无功电流分量存在的问题。提出了一种准确检测这些电流分量的方法,即先构造出一个理想的基波对称系统,使该三相系统的电压等于原来非对称系统的基波正序电压,在此基础上进行谐波和无功电流的检测。对该检测方法进行了理论分析和仿真,仿真结果证明了在三相电压不对称时该检测方法仍然能正确地检测出谐波和基波有功、无功电流。  相似文献   

8.
基于理论推导和分析,指出了在三相电压不对称时,应用瞬时无功功率理论检测谐波和基波正序有功及无功电流分量存在的问题.提出了一种准确检测这些电流分量的方法,即先构造出一个理想的基波对称系统,使该三相系统的电压等于原来非对称系统的基波正序电压,在此基础上进行谐波和无功电流的检测.对该检测方法进行了理论分析和仿真,仿真结果证明了在三相电压不对称时该检测方法仍然能正确地检测出谐波和基波有功、无功电流.  相似文献   

9.
此处分析了三相四线制有源电力滤波器(APF)基于佛布迪(FBD)的谐波电流检测算法,针对它在不平衡畸变电网电压下的不足,提出一种改进的谐波电流检测算法。该方法利用三角函数矩阵与电网电压运算,得到基波正序电压,再基于单同步坐标系软件锁相环(PLL)实时跟踪基波正序电压的相位,进而快速求取谐波指令电流。仿真分析和实验结果验证了该方法的检测结果不受电网电压不平衡和畸变影响。  相似文献   

10.
基于光伏并网发电系统和并联型APF在拓扑结构、运行方式和控制方法等方面有诸多相同点,提出一种将有源滤波和无功功率补偿与光伏并网发电相结合的一体化系统。为了检测该供电系统中的谐波和无功电流,提出了一种基于FBD法的检测方法。该方法测量电压相位产生参考电压来做投影变换,利用等效电导对负载电流进行分解,计算出基波正序有功、无功及谐波电流分量。与基于瞬时无功功率理论的电流检测方法相比,该方法没有复杂的Park变换和d-q变换,可以更加快速有效地进行电流实时检测,并且可以灵活应用于三相不平衡供电系统。仿真结果表明了该电流检测方法的正确性和有效性。  相似文献   

11.
在有源滤波器设计中,指令电流的检测是控制与补偿的关键技术环节。在三相电压不对称情况下,由于a相电压与其正序电压之间存在相位差,使传统FBD检测法在提取指令电流时存在误差,针对此不足提出一种改进的FBD检测法,该方法通过瞬时对称分量法检测电网电压基波正序分量的相位,减小了因三相电压不对称而导致的检测误差,同时引入电流平均值理论提取等效电导的直流分量,提高了指令电流检测的动态响应能力。仿真结果表明,基于改进FBD法的有源滤波器能够快速准确地检测和补偿三相不对称系统中的谐波和无功电流。  相似文献   

12.
一种改进的无锁相环FBD谐波电流检测方法   总被引:2,自引:0,他引:2  
针对传统FBD谐波电流检测法在提取基波正序有功电流信号时存在误差较大的问题,提出了一种改进的FBD谐波电流检测方法。该方法利用瞬时对称分量法和同步基准变换法对三相电压进行变换,得到与基波正序电压同相位的基准电压信号来代替锁相环提取的电压正余弦量,计算出准确的三相瞬时正序有功等效电导,提取基波正序有功电流,最终获取精准的谐波电流。理论分析表明,该方法不受电网电压不对称和电流畸变的影响,消除了锁相环提取信号带来的误差,提高了检测精度且易于实现。仿真结果验证了该方法的精准性和可行性。  相似文献   

13.
曲轶龙  于晶荣  吴伟标 《电源技术》2012,36(8):1143-1146
为提高有源电力滤波器(Active Power Filter,APF)中谐波电流检测方法的性能,提出了一种基于FBD算法的新型谐波电流检测方法,该方法利用平均值电流计算环节取代传统FBD法中的低通滤波器,有效避免了谐波电流检测方法中存在的检测精度及动态响应和复杂计算等问题,并且在电网电压不对称情况下,该方法同样适用。给出了在稳态及突加负载的情况下,该算法的仿真测试结果,结果表明该算法具有动态响应速度快、检测精度高和实现简单的特点,具有很好的工程实用价值。  相似文献   

14.
改良FBD法在谐波电流检测中的应用研究   总被引:1,自引:0,他引:1  
为进一步提高有源电力滤波器(APF)的补偿效果,节约电流检测的时间,此处对FBD法做了改进,提高谐波电流的检测精度和实时性。分析了FBD电流检测的原理,通过加入网侧电流的控制作用及超前校正网络的补偿环节,实现FBD检测法的改进。该方法对于减少电流检测的滞后误差,提高系统的谐波及无功电流补偿效果有明显效用。通过Matlab软件建模仿真及实验分析,验证了该方法的正确性。  相似文献   

15.
针对平衡变压器供电方式下,高速电气化铁道谐波、负序电流引起的电压畸变,指令电流检测过程复杂、延时较长,结果含有误差的缺点,提出了一种无需锁相环电路快速准确地提取指令电流的方法。该方法通过简单的数乘运算提取基波电压,运用同步检测法来准确地检测出指令电流信号的方法,使两供电臂功率平衡,电流对称且与供电臂基波电压同相位,消除无功、谐波及负序电流对三相电力系统的影响。相比传统的带锁相环,基于鉴相原理和瞬时无功功率理论的检测方法,该方法更加简便易行,运算速度更快,且不受电网畸变条件的影响。通过仿真分析,验证了该检测方法在电气化牵引供电系统电压畸变条件下运用的正确性和可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号