首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Volatile Organic Compounds (VOCs) exposure can induce a range of adverse human health effects. To date, however, personal VOCs exposure and residential indoor and outdoor VOCs levels have not been well characterized in the mainland of China, less is known about health risk of personal exposure to VOCs. In this study, personal exposures for 12 participants as well as residential indoor/outdoor, workplace and in vehicle VOCs concentrations were measured simultaneously in Tianjin, China. All VOCs samples were collected using passive samplers for 5 days and were analyzed using Thermal Desorption GC-MS method. U.S. Environmental Protect Agency's Inhalation Unit Risks were used to calculate the inhalation cancer health risk. To assess uncertainty of health risk estimate, Monte Carlo simulation and sensitivity analysis were implemented. Personal exposures were greater than residential indoor exposures as expected with the exception of carbon tetrachloride. Exposure assessment showed modeled and measured concentrations are statistically linearly correlated for all VOCs (P < 0.01) except chloroform, confirming that estimated personal exposure using time-weighted model can provide reasonable estimate of personal inhalation exposure to VOCs. Indoor smoking and recent renovation were identified as two major factors influencing personal exposure based on the time-activity pattern and factor analysis. According to the cancer risk analysis of personal exposure, benzene, chloroform, carbon tetrachloride and 1,3-butadiene had median upper-bound lifetime cancer risks that exceeded the U.S. EPA benchmark of 1 per one million, and benzene presented the highest median risks at about 22 per one million population. The median cumulative cancer risk of personal exposure to 5 VOCs was approximately 44 per million, followed by indoor exposure (37 per million) and in vehicle exposure (36 per million). Sensitivity analysis suggested that improving the accuracy of exposure measurement in further research would advance the health risk assessment.  相似文献   

2.
It is suspected that persons who work in indoor environments near busy roadways are exposed to elevated levels of air pollutants during working hours. This study evaluated the potential exposure and source contribution associated with traffic-related air pollution for workers (polishers and repairmen) in shoe stalls from each of 32 districts during working hours in Seoul, Korea. The shoe stalls have been located at very close distances to the busy roadways. In this study, shoe stall workers could be exposed to high levels of respirable suspended particulate (RSP), nitrogen dioxide (NO(2)) and volatile organic compounds (VOCs) from outdoor sources such as traffic exhaust, as well as indoor sources in the shoe stalls such as dust on the shoes, portable gas ranges, organic solvents, adhesives and shoe polish. Compounds of particular note included indoor mean concentrations of benzene, toluene, m/p-xylene and o-xylene were 0.732, 6.777, 4.080 and 1.302 mg/m(3), respectively, in all shoe stalls. Mean indoor/outdoor ratios for toluene and m/p-xylene concentrations were 54.52 and 20.84, respectively. The contribution of vehicle exhaust emissions to indoor air quality of shoe stalls was identified by means of correlating the relationships between simultaneously measured air pollutant concentrations indoors and outdoors. Unlike RSP and NO(2), indoor VOCs concentrations of shoe stalls mainly originated from indoor sources vs. outdoor sources.  相似文献   

3.
Housing has long been thought to play a significant role in population exposure to environmental hazards such as high temperatures and air pollution.However,there is sparse data describing how housing may modify heat and air pollution exposure such that housing's role in poor health and mortality from these hazards may be estimated.This paper describes the development of individual-address level indoor overheating and air pollution risk modifiers for Great Britain,for use alongside historical weather,outdoor air pollution,population socio-economic data,and mortality data in a large-scale epidemiological investigation.A geographically-referenced housing stock database was developed using the Homes Energy Efficiency Database(HEED)and the English Housing Survey(EHS).Simulations of unique combinations of building,fabric,occupation,and environment were run using a modelling framework developed for Energy Plus8.0,estimating indoor temperature metrics,indoor/outdoor ratio of pollution from outdoor sources,and indoor air pollution from multiple indoor sources.Results were compiled,matched back to individual properties in HEED,and mapped using Geographical Information Systems(GIS).Results indicate urban areas had higher numbers of buildings prone to overheating,reduced levels indoor air pollution from outdoor sources,and higher air pollution from indoor sources relative to rural areas,driven largely by variations in building types.The results provide the first national-scale quantitative estimate of heat and indoor air pollution modification by dwellings,aggregated at levels suitable for inclusion in health analysis.  相似文献   

4.
张瑞杰  韩燕  杨月华 《山西建筑》2008,34(3):353-354
概述了室内空气污染的类型,全面介绍了目前各种室内空气净化技术及其进展,并分析了各技术的优缺点,提出了今后的研究方向,以解决室内空气的污染问题,从而改善室内空气质量。  相似文献   

5.
The aim of this study was to identify determinants of aldehyde and volatile organic compound (VOC) indoor air concentrations in a sample of more than 140 office rooms, in the framework of the European OFFICAIR research project. A large field campaign was performed, which included (a) the air sampling of aldehydes and VOCs in 37 newly built or recently retrofitted office buildings across 8 European countries in summer and winter and (b) the collection of information on building and offices’ characteristics using checklists. Linear mixed models for repeated measurements were applied to identify the main factors affecting the measured concentrations of selected indoor air pollutants (IAPs). Several associations between aldehydes and VOCs concentrations and buildings’ structural characteristic or occupants’ activity patterns were identified. The aldehyde and VOC determinants in office buildings include building and furnishing materials, indoor climate characteristics (room temperature and relative humidity), the use of consumer products (eg, cleaning and personal care products, office equipment), as well as the presence of outdoor sources in the proximity of the buildings (ie, vehicular traffic). Results also showed that determinants of indoor air concentrations varied considerably among different type of pollutants.  相似文献   

6.
Toxicological potential of carbon monoxide (CO) on humans is well known. Nevertheless, CO is still considered as a useful marker to detect some environmental and occupational human risk factors typical of cities. The role played by traffic pollution, indoor air quality in offices and tobacco smoke on the expression of carboxyhemoglobin (COHb%) levels was investigated in a large group of traffic policemen in Torino city (North-Western Italy). At the end of the working shift, 228 policemen responded to a questionnaire, weight and height recorded, urine spot samples collected to measure cotinine as biomarker of tobacco smoke exposure, and an arterial blood sample was taken to measure COHb levels. Data of outdoor urban air-CO were collected and to each subject a "CO outdoor air measurement" was related to his/her COHb level. Considering the annual trend of air-CO pollution from 2002 to 2004, one can assume that a general improvement of air quality in Torino was evident. Taking into account the environments where policemen work (urban outdoor and indoor), and analyzing their COHb% content, the traffic-congested areas, and, in general, the outdoor urban environment were equally risky as offices. Furthermore, if compared to CO arising from traffic-congested areas or other outdoor environments, the traffic policemen in Torino city demonstrate COHb% levels largely due to smoking habits.  相似文献   

7.
As epidemiological studies report associations between ambient air pollution and adverse birth outcomes, it is important to understand determinants of exposures among pregnant women. We measured (48-h, personal exposure) and modeled (using outdoor ambient monitors and a traffic-based land-use regression model) NO, NO(2), fine particle mass and absorbance in 62 non-smoking pregnant women in Vancouver, Canada on 1-3 occasions during pregnancy (total N=127). We developed predictive models for personal measurements using modeled ambient concentrations and individual determinants of exposure. Geometric mean exposures of personal samples were relatively low (GM (GSD) NO=37 ppb (2.0); NO(2)=17 ppb (1.6); 'soot', as filter absorbance=0.8 10(-5) m(-1) (1.5); PM(2.2)=10 microg m(-3) (1.6)). Having a gas stove (vs. electric stove) in the home was associated with exposure increases of 89% (NO), 44% (NO(2)), 20% (absorbance) and 35% (fine PM). Interpolated concentrations from outdoor fixed-site monitors were associated with all personal exposures except NO(2). Land-use regression model estimates of outdoor air pollution were associated with personal NO and NO(2) only. The effects of outdoor air pollution on personal samples were consistent, with and without adjustment for other individual determinants (e.g. gas stove). These findings improve our understanding of sources of exposure to air pollutants among pregnant women and support the use of outdoor concentration estimates as proxies for exposure in epidemiologic studies.  相似文献   

8.
Air pollution is becoming more and more severe in large cities. Accurate and rapid identification of outdoor pollutant sources can facilitate proper and effective air quality management in urban environments. Traditional “trial–error” process is time consuming and is incapacity in distinguishing multiple potential sources, which is common in urban pollution. Inverse prediction methods such as probability based adjoint modelling method have shown viability for locating indoor contaminant sources. This paper advances the adjoint probability method to track outdoor pollutant sources of constant release. The study develops an inverse modelling algorithm that can promptly locate multiple outdoor pollutant sources with limited pollution information detected by a movable sensor. Two numerical field experiments are conducted to illustrate and verify the predictions: one in an open space and the other in an urban environment. The developed algorithm promptly and accurately identifies the source locations in both cases. The requirement of an accurate urban building model is the primary prerequisite of the developed algorithm for urban application.  相似文献   

9.
Air samples, representing indoor environments of a kitchen in which a kerosene stove was used were collected and analysed for volatile organic compounds (VOCs) viz., n-hexane, benzene, heptane, toluene, p- and o-xylene and n-decane using a cryogenic preconcentration system and a gas chromatograph with a flame-ionisation detector. Simultaneous outdoor samples were also collected to determine indoor to outdoor (I/O) ratios for each compound. Reversed phase high performance liquid chromatography (HPLC) with ultra violet absorption detection was optimised for separation and quantification of polycyclic aromatic hydrocarbons (PAHs) in air particulate matter. Concentration of total suspended particulate matter (TSPM), benzene soluble organics and the PAHs in air samples collected in indoor environment of some tenements at Trombay, Mumbai where kerosene is used as cooking fuel are discussed in relation to the concentration of the same in outdoor environment in vicinity of the tenement. VOCs and PAHs results from samples collected in kitchens in Trombay are discussed in relation to indoor air pollution.  相似文献   

10.
Y. Chen  W. Du  G. Shen  S. Zhuo  X. Zhu  H. Shen  Y. Huang  S. Su  N. Lin  L. Pei  X. Zheng  J. Wu  Y. Duan  X. Wang  W. Liu  M. Wong  S. Tao 《Indoor air》2017,27(1):169-178
Residential solid fuels are widely consumed in rural China, contributing to severe household air pollution for many products of incomplete combustion, such as polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives. In this study, concentrations of nitrated and oxygenated PAH derivatives (nPAHs and oPAHs) for household and personal air were measured and analyzed for influencing factors like smoking and cooking energy type. Concentrations of nPAHs and oPAHs in kitchens were higher than those in living rooms and in outdoor air. Exposure levels measured by personal samplers were lower than levels in indoor air, but higher than outdoor air levels. With increasing molecular weight, individual compounds tended to be more commonly partitioned to particulate matter (PM); moreover, higher molecular weight nPAHs and oPAHs were preferentially found in finer particles, suggesting a potential for increased health risks. Smoking behavior raised the concentrations of nPAHs and oPAHs in personal air significantly. People who cooked food also had higher personal exposures. Cooking and smoking have a significant interaction effect on personal exposure. Concentrations in kitchens and personal exposure to nPAHs and oPAHs for households using wood and peat were significantly higher than for those using electricity and liquid petroleum gas (LPG).  相似文献   

11.
Several studies among adult populations showed that an array of outdoor and indoor sources of particles emissions contributed to personal exposures to atmospheric particles, with tobacco smoke playing a prominent role (J. Expo. Anal. Environ. Epidemiol. 6 (1996) 57, Environ. Int. 24 (1998) 405, Arch. Environ. Health 54 (1999) 95). The Vesta study was carried out to assess the role of exposure to traffic emissions in the development of childhood asthma. In this paper, we present data on 68 children aged 8-14 years, living in the metropolitan areas of Paris (n = 30), Grenoble (n = 15) and Toulouse (n = 23), France, who continuously carried, over 48 h, a rucksack that contained an active PM2.5 sampler. Data about home indoor sources were collected by questionnaires. In parallel, daily concentrations of PM10 in ambient air were monitored by local air quality networks. The contribution of indoor and outdoor factors to personal exposures was assessed using multiple linear regression models. Average personal exposure across all children was 23.7 microg/m3 (S.D. = 19.0 microg/m3), with local means ranging from 18.2 to 29.4 microg/m3. The final model explains 36% of the total between-subjects variance, with environmental tobacco smoke contributing for more than a third to this variability; presence of pets at home, proximity of the home to urban traffic emissions, and concomitant PM10 ambient air concentrations were the other main determinants of personal exposure.  相似文献   

12.
室内环境污染与健康   总被引:5,自引:3,他引:5  
人们对室外污染的认识和相关的健康问题以及如何提高室外空气质量都有了很好的了解,对室外污染的关注程度远大于对室内污染的关注程度。但调查资料表明室内空气污染比室外在气污染更为严重。阐述了室内的主要污染源和污染物种类,具体分析了室内各种主要污染物对人体健康产一的影响及可能引起的疾病,以加强人们对室内环境的关注,提高室内环境质量。最后给出了改善室内环境的建议。  相似文献   

13.
OBJECTIVE: Personal exposure to airborne benzene is influenced by various outdoor and indoor sources. The first aim of this study was to assess the benzene exposure of a sample of urban inhabitants living in an inner-city neighborhood of Florence, Italy, excluding exposure from active smoking. The secondary objective was to differentiate the personal exposures according to personal usage patterns of the vehicles. METHODS: A sample of 67 healthy non-smokers was monitored by passive samplers during two 4-weekday campaigns in winter and late spring. Simultaneously, benzene measurements were also taken for a subset of participants, inside and outside their houses. A 4-day time microenvironment activity diary was completed by each subject during each sampling period. Other relevant exposure data were collected by a questionnaire before the sampling. Additional data on urban ambient air benzene levels were also available from the public air quality network. The passive samplers, after automated thermal desorption, were analyzed by GC-FID. RESULTS: Benzene personal exposure levels averaged 6.9 (SD=2.1) and 2.3 (SD=0.7) microg/m(3) in winter and spring, respectively. Outdoor and indoor levels showed high correlation in winter and poor in spring. In winter the highest benzene personal exposure levels were for people traveling by more public transport, followed by users of only car and by users of only bus respectively. CONCLUSIONS: The time spent in-transport for work or leisure makes a major contribution to benzene exposure among Florentine non-smoking citizens. Indoor pollution and transportation means contribute significantly to individual exposure levels especially in winter season.  相似文献   

14.
随着城市交通的快速发展,交通污染逐渐成为影响城市空气质量的主要因素。街谷内的交通污染还会因为室内通风对室内空气质量产生影响。本文介绍了城市街谷内交通空气污染的主要特点和扩散模式,总结了室外交通污染对室内空气质量的影响特点和影响因素,并对现有的实地测量法、理论模式预测法和数值模拟法进行了分析和比较,最终对数值模拟法可能遇到的问题和解决方法进行了分析和讨论。  相似文献   

15.
Indoor air quality (IAQ) has been a matter of public concern these days whereas air pollution is normally monitored outdoors as part of obligations under the National air quality strategies. Much little is known about levels of air pollution indoors. Simultaneous measurements of indoor and outdoor carbon monoxide (CO) and oxides of nitrogen (NO and NO2) concentrations were conducted at three different environments, i.e. rural, urban and roadside in Agra, India, using YES - 205 multigas monitor during the winter season, i.e. October 2002-February 2003. A statistical correlation analysis of indoor concentration levels with outdoor concentrations was carried out. CO was maximum at roadside locations with indoor concentrations 2072.5 +/- 372 p.p.b. and outdoor concentrations 1220 +/- 281 p.p.b. (R2 = 0.005). Oxides of nitrogen were found maximum at urban site; NO concentration was 385 +/- 211 and 637 +/- 269 p.p.b. for indoors and outdoors respectively (R2 = 0.90792), where as NO2 concentration was 255 +/- 146 p.p.b. for indoors and 460 +/- 225 p.p.b. for outdoors (R2 = 0939464). Although indoor concentration at all the houses of the three sites have a positive correlation with outdoor concentration, CO variation indoors was very less due to outdoor sources. An activity schedule of inside and outside these homes were also prepared to see its influence and concentrations of pollutants. As standards for indoor air were not available for the Indian conditions these were compared with the known standards of other countries, where as outdoor concentrations were compared with the standards given by the Central Pollution Control board, which shows that indoor concentrations of both NO(x) and CO lie below permissible limits but outdoor concentrations of NO(x) cross the standard limits. PRACTICAL IMPLICATIONS: 'India currently bears the largest number of indoor air pollution (IAP) related health problems in world. An estimated 500,000 women & children die in India each year due to IAP-related cause--this is 25% of estimated IAP-related deaths worldwide. This study will be useful for policy makers, health related officials, academicians and Scientists who have interest in countries of developing world'.  相似文献   

16.
In developed and developing countries, indoor air pollutionis gaining increasing prominence as a public health problem. Time-activity studies and exposure surveys have shown the dominant contributions of indoor environments to population exposures for many pollutants. Mounting epidemiological evidence documents adverse health effects of indoor pollutants and risk assessments indicate that indoor carcinogens may contribute substantially to the population's burden of lung and other cancers. Unacceptable indoor air quality has also been identified as a common cause of symptoms. This paper addresses the public health problem posed by indoor air pollution, offering a schema for categorizing adverse health effects of indoor air pollution, and considers the complexiry of estimating the full scope of the problem  相似文献   

17.
Several recent studies suggest an association between long-term exposure to traffic-related air pollution and health. Most studies use indicators of exposure such as outdoor air pollution or traffic density on the street of residence. Little information is available about the validity of these measurements as an estimate of long-term personal exposure to traffic-related air pollution. In this pilot study, we assessed outdoor and personal exposure to traffic-related air pollution in children living in homes on streets with different degree of traffic intensity. The personal exposure of 14 children aged 9-12 years to 'soot', NO(x) (NO and NO(2)) was assessed in Amsterdam between March and June 2003. Each child's personal exposure was monitored during four repeated 48-h periods. Concurrently, in- and outdoor NO(x) measurements were carried out at the school and at the home of each participating child. Measurements were supplemented by a questionnaire on time activity patterns and possible indoor sources. Flow-controlled battery operated pumps in a made-to-fit backpack were used to sample personal exposure to 'soot', determined from the reflectance of PM(2.5) filters. Exposure to NO(x) was assessed using Ogawa passive samplers. Children living near busy roads were found to have a 35% higher personal exposure to 'soot' than children living at an urban background location, despite that all children attended the same school that was located away from busy roads. Smaller contrasts in personal exposure were found for NO (14%), NO(2) (15%) and NO(x) (14%). This finding supports the use of 'living near a busy road' as a measure of exposure in epidemiological studies on the effects of traffic-related air pollution in children.  相似文献   

18.
Abstract Acoustic rhinometry and hygienic measurements of indoor air pollutants were applied in a field study on nasal congestion among 27 subjects working in two primary schools. One school had natural ventilation only and a low air exchange rate (0.6 ac/h); the other had balanced mechanical ventilation and a high air exchange rate (5.2 ac/h). The minimal cross-sectional area and volume of the nasal cavity were estimated with acoustic rhinometry. The degree of swelling of the nasal mucosa was measured as the increase of the cross-sectional area after standardized application of nasal spray containing a decongestive adrenergic substance. Reports on weekly symptoms of nasal congestion were similar (33%) in both schools. A significantly increased decongestive effect was noticed for the minimal cross-sectional area (MCA2) among personnel in the school with a low air exchange rate. The difference between the schools in decongestive effect on MCA2 was 23%, corresponding to a 3% increase of MCA2 for a difference in personal outdoor airflow of one litre. Indoor concentration of volatile organic compounds (VOC), respirable dust, bacteria, moulds and VOCs of possible microbial origin (MVOC) were 2–8 times higher in the naturally ventilated school. In conclusion, inadequate outdoor air supply in schools may lead to raised levels of indoor air pollutants, causing a sub-clinical swelling of the nasal mucosa. Our results indicate that acoustic rhinometry could be applied in field studies, and that objective measurement of nasal decongestion might be a more sensitive measure of biological effects of indoor air pollution than symptom reporting.  相似文献   

19.
Personal exposures of 100 adult non-smokers living in the UK, as well as home and workplace microenvironment concentrations of 15 volatile organic compounds were investigated. The strength of the association between personal exposure and indoor home and workplace concentrations as well as with central site ambient air concentrations in medium to low pollution areas was assessed. Home microenvironment concentrations were strongly associated with personal exposures indicating that the home is the driving factor determining personal exposures to VOCs, explaining between 11 and 75% of the total variability. Workplace and central site ambient concentrations were less correlated with the corresponding personal concentrations, explaining up to 11-22% of the variability only at the low exposure end of the concentration range (e.g. benzene concentrations < 2.5 μg m−3). One of the reasons for the discrepancies between personal exposures and central site data was that the latter does not account for exposure due to personal activities (e.g. commuting, painting). A moderate effect of season on the strength of the association between personal exposure and ambient concentrations was found. This needs to be taken into account when using fixed site measurements to infer exposures.  相似文献   

20.
《Energy and Buildings》2004,36(12):1235-1239
In recent years, more and more people have started to recognize the importance of indoor air environment. In order to obtain the comprehensive knowledge about the indoor environment situation and find out the main source of indoor air pollution, 550 residents living in different buildings/apartments were subjected to a questionnaire survey and field measurements were conducted in 30 of these buildings/apartments in Dalian from January to February 2002. From the questionnaire survey and field measurements, we found that many residential buildings had good outdoor surroundings. Dust and automobile emissions are main sources of outdoor air pollution. Though air tightness of these buildings is fairly good, outdoor air quality still has great impact on indoor air environment. The most serious indoor air pollutant is formaldehyde which is mainly caused by decoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号