首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
红曲霉JR液体发酵产红曲色素的工艺研究   总被引:1,自引:0,他引:1  
对红曲霉JR液体发酵产红曲色素的发酵丁艺进行了研究.首先,考察了培养基装量、接种量以及培养基初始pH值等因素对红曲霉JR液体发酵产红曲色素色阶的影响,结果表明30mL/250mL三角瓶的培养基装量5%~20%的接种量、培养基初始pH7.0最有利于红曲色素的合成;此外,对红曲霉爪摇瓶分批发酵与摇瓶分批补料发酵的培养模式进行了比较,结果表明:摇瓶分批补料培养所得的最大菌体干重和红曲色素色阶分别为44.57g/L和350.7U/mL,均显著高于摇瓶分批培养下的25.59g/L和160.83U/mL.  相似文献   

2.
红曲霉深层发酵生产红曲色素的研究   总被引:6,自引:0,他引:6  
研究了发酵条件对红曲霉EW983产红曲色素的影响,摇瓶培养的最佳条件是:温度为31~32.5℃,培养时间为3d,接种量为5%(V/V),装液量为70mL/500mL三角瓶,转速为250r/min,培养基初始pH为3.8。摇瓶发酵液的红色素色价为410U/mL,比培养条件优化前增加了35.8%。在500L发酵罐中培养,发酵液的红色素色价平均为263U/mL。  相似文献   

3.
低桔霉素红曲色素液态发酵工艺的研究   总被引:1,自引:0,他引:1  
研究了碳源、氮源和Mg2+对高产色素低桔霉素红曲霉M onascus sp.sjs-3产色素和桔霉素的影响,确定了液态发酵最优培养基为玉米淀粉50g/L,大豆3g/L,ZnSO·47H2O0.5g/L,CaCl20.1g/L,K2H PO45g/L,K H2PO45g/L,M nSO4·H2O0.3g/L,FeSO·47H2O0.01g/L,发酵192h时,菌体色素产量达到最高,胞内的红色价为173U/mL,未检出桔霉素。  相似文献   

4.
对实验室保藏的红曲霉菌株进行了优选,获得了产量较高的红曲色素生产菌株Monascus purpureus M5,其液态发酵的红色素产量达到了154.5U/mL.对M5发酵产色素的碳源、氮源、初始pH值等进行了优化,以70g/L大米粉、30g/L可溶性淀粉、10g/L黄豆粉、1g/L NaNO3为发酵培养基,初始pH值4.0,35℃条件下培养6d,M5摇瓶发酵红色素的产量达到195.8U/mL.在5L发酵罐中对M5进行葡萄糖补料分批发酵培养,其色素产量在108h时达到最大值253.2U/mL,相比摇瓶分批发酵提高了29.3%,成效显著.  相似文献   

5.
对红曲霉固态发酵产红曲色素的条件进行了探索,通过单因素试验和正交试验确定了利用红曲霉固态发酵生产红曲色素的最佳培养基为:培养基初始含水量为50%、3%葡萄糖、0.1%甘油、3%酵母粉、0.1%硝酸铵、0.2%氯化铵、2%蛋白胨、0.4%硫酸镁、0.3%磷酸二氢钾。发酵所得红曲色素的色价可达到1302U/g。  相似文献   

6.
红曲色素在曲霉发酵代谢中生理功能的探讨   总被引:2,自引:0,他引:2  
傅亮 《食品科学》1998,19(10):10-12
对红曲霉发酵过程中合成的红曲色素的生理功能研究表明:红曲色素是红曲霉的一种能量贮存物质,又是一种氮源捕独剂。证实了红曲色素在红曲霉发酵过程中特殊而巧妙的生理功能。  相似文献   

7.
红曲色素液体发酵动力学模型的构建   总被引:1,自引:0,他引:1  
为构建红曲色素液体发酵动力学模型,对红曲霉合成色素进行了初步研究。在红曲霉分批发酵过程中,测定茵体干重、总糖浓度、色价和pH值,经处理后得到茵体生长、红曲色素合成和基质消耗的动力学模型及参数。对比实验数据与模型表明,两者能较好地拟合,基本反映红曲霉发酵合成红曲色素。  相似文献   

8.
庄桂 《中国酿造》2007,(4):13-16
利用黑曲霉Aspergillus niger HS-16菌株作生产菌,麸皮为原料,采用厚层通风固体发酵工艺糖化麸皮,使麸皮的还原糖含量从2.8g/100g增加到糖化后的39.0g/100g,为红曲霉M-1菌株利用麸皮制备红曲麸增加了可发酵碳源。再利用红曲霉M-1菌株为生产菌,糖化麸皮为原料,采用曲盒发酵工艺制备红曲麸,红曲麸的红曲色素色价达到了372U/g,为二级红曲米红曲色素色价的74%。  相似文献   

9.
红曲色素高产菌株的诱变筛选及液态发酵初探   总被引:5,自引:0,他引:5  
从不同的红曲样品中分离纯化获得红曲霉菌株 5株 ,以此为菌种液态发酵制备红曲 ,选出发酵后菌丝体色价与发酵原液色价都相对较高的编号为M3的菌株为出发菌株 ,进行了6 0 Co γ射线的诱变 ,获得了编号为M 3 2相对高产的色素菌株 ,其发酵后菌丝体总色价和发酵液总色价分别提高了 2 7 0 8%和 2 5 90 %。并对其液态发酵制备的红曲色素进行了质量分析。  相似文献   

10.
红曲霉固态发酵产生红曲色素工艺研究   总被引:11,自引:0,他引:11  
研究了以红曲霉为菌种,固体发酵法生产红曲色素的工艺。从产色素效果和原料的成本来考虑,选用大米做碳源。在发酵过程中添加氮源有利于色价的提高。红曲固态发酵最佳条件是接种量6%,米饭初始水分38%,发酵温度32-35℃,全过程发酵10d。  相似文献   

11.
红曲霉液态发酵生产红色素的培养基配方研究   总被引:1,自引:0,他引:1  
研究了菌株紫红曲霉No.1-18-54液态发酵产红色素的培养基配方,通过对比试验和正交试验,其最佳液体培养基配方为大米粉9%、硝酸钠0.2%、磷酸二氢钾0.1%、硫酸镁0.2%。  相似文献   

12.
红曲霉液体培养条件与产色的关系   总被引:1,自引:0,他引:1  
本文采用正交实验的方法,研究了红曲霉液体培养条件与产红曲色素的关系。试验结果表明,最佳培养条件为:温度28℃、PH=6.0、摇瓶盖口纱布层数为8层、转速为140r/min、装量为50mL/250mL、发酵时间为72h。在此培养条件下,发酵液的总色价为52.2U/mL。  相似文献   

13.
以分离自贵州某浓香型酒厂中温大曲的紫色红曲霉(Monascus purpureus)FBKL3.0018为研究对象,以发酵液中红曲色素色价为考察指标,对紫色红曲霉FBKL3.0018产红曲色素的发酵培养基配方进行优化。考察了碳源、氮源、无机盐、生长因子及初始pH值对红曲色素生产的影响,选取对红曲色素生产影响较显著的蛋白胨、FeSO4和初始pH进行响应面优化试验。得到最佳培养基配方为:葡萄糖60 g/L、蛋白胨26 g/L、FeSO4 0.9 g/L、L-谷氨酸 2 g/L和初始pH 4.5。在此优化条件下,红曲色素色价为105.22 U/mL,比优化之前(33.62 U/mL)提高了3.13倍。同时,通过验证试验,实际值105.22 U/mL与预测值108.82 U/mL相对误差为0.97%,说明所建立的回归模型可靠。  相似文献   

14.
红曲色素是一种天然的安全的食用色素,在食品行业应用广泛。主要研究了光照、温度、pH、金属离子(Cu2+、Ca2+、Mg2+、K+和Na+)以及食品添加剂(酸度调节剂、甜味剂、防腐剂和抗氧化剂)对红曲色素TR稳定性的影响。结果表明,红曲色素TR溶液的光稳定性较差,在室外光照20h其色价保存率仅为49.9%,室内光照和避光对溶液色价影响不明显;溶液具有较好的热稳定性,在120℃下加热1h其色价保存率为82%以上;pH在3~11范围溶液稳定性好,无沉淀产生并且色泽明亮;Fe2+影响能使溶液有少量沉淀产生,其他金属离子影响小;食品添加剂(酸度调节剂、甜味剂、防腐剂和抗氧化剂)对溶液稳定性影响小。  相似文献   

15.
为了提高红曲红色素的产量,采用响应曲面分析法对红曲霉1001发酵培养基进行了优化。通过单因素实验,确立了发酵培养基的基本组分:大米粉、葡萄糖、黄豆粉、KH2PO4、NaNO3、MgSO4、ZnSO4、玉米浆。Plackett-Burman实验确定了影响红曲红色素产量的关键因素为黄豆粉、KH2PO4、NaNO3。接着进行最陡爬坡实验逼近3个关键因素的最大响应区域。在此基础上,采用Box-Benhnken Design实验设计法对发酵培养基组分进行优化,得出最佳配方为KH2PO41.52g/L,NaNO30.51g/L,黄豆粉35.00g/L,红曲红色素色价为437.73U/mL,比优化前提高了1倍。   相似文献   

16.
红曲红色素在酱油增色方面的应用研究   总被引:1,自引:0,他引:1  
赵吉兴 《中国酿造》2012,31(8):132-135
该文研究了红曲红色素添加于酱油中的增色效应及其稳定性.结果表明通过在酱油中添加0.2%的红曲红色素,可明显提高酱油的色泽和红色指数,并且具有良好的光稳定性和热稳定性.  相似文献   

17.
优质红曲色素高生物量生产的条件探讨   总被引:5,自引:0,他引:5  
本针对红曲色素内在的生化机理及其生产工艺,分析了红曲色素成分变化的原因,总结了不同碳氮源培养基,不同生长环境因子和不同工艺等条件下红曲霉产红曲色素的最新研究成果,简要提出了红曲色素产业化发展的研究措施和发展方向。  相似文献   

18.
大孔吸附树脂吸附红曲红色素提取废液的研究   总被引:1,自引:0,他引:1  
通过测定9种树脂对红曲红发酵后压滤产的废液的吸收率,选择NKA树脂作动态吸附、洗脱及小型生产实验的材料,研究结果表明湿树脂与废液比例为1∶20~25,用95%酒精洗脱,吸附收率、洗脱收率均在60%以上,废液COD下降约45.7%,大大地缓解了污水处理系统的压力,降低污水处理成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号