首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alar Jänes  Heisi Kurig  Enn Lust 《Carbon》2007,45(6):1226-1233
Commercial nanoporous carbon RP-20 was activated with water vapor in the temperature range from 950 °C to 1150 °C. The XRD analysis was carried out on nanoporous carbon powder samples to investigate the structural changes (graphitisation) in modified carbon that occurred at activation temperatures T ? 1150 °C. The first-order Raman spectra showed the absorption peak at 1582 cm−1 and the disorder (D) peak at 1350 cm−1. The low-temperature N2 adsorption experiments were performed at −196 °C and a specific surface area up to 2240 m2g−1 for carbon activated at T = 1050 °C was measured. The cell capacitance for two electrode activated nanoporous carbon system advanced up to 60 F g−1 giving the specific capacitance ∼240 F g−1 to one electrode nanoporous carbon ∣1.2 M (C2H5)3CH3NBF4 + acetonitrile solution interface. A very wide region of ideal polarisability for two electrode system (∼3.2 V) was achieved. The low frequency limiting specific capacitance very weakly increases with the rise of specific area explained by the mass transfer limitations in the nanoporous carbon electrodes. The electrochemical characteristics obtained show that some of these materials under discussion can be used for compilation of high energy density and power density non-aqueous electrolyte supercapacitors with higher power densities than aqueous supercapacitors.  相似文献   

2.
Micro- and mesoporous carbide-derived carbon (CDC) was synthesised from molybdenum carbide (Mo2C) powder by gas phase chlorination in the temperature range from 400 to 1200 °C. Analysis of XRD results show that C(Mo2C), chlorinated at 1200 °C, consist mainly on graphitic crystallites of mean size, La = 9 nm and Lc = 7.5 nm. The first-order Raman spectra showed the graphite-like absorption peak at ∼1587 cm−1 and the disorder-induced (D) peak at ∼1348 cm−1. The low-temperature N2 adsorption experiments were performed and a specific surface area up to 1855 m2 g−1 and total pore volume up to 1.399 cm3 g−1 were obtained. Sorption measurements showed the presence of both micro- and mesopores after chlorination at 400-900 °C and only mesopores after chlorination at 1000°-1200 °C. Stepwise formation of micro- and mesopores was achieved and the peak pore size can be shifted from 0.8 nm up to 4 nm by increasing the chlorination temperature.  相似文献   

3.
J. Leis  M. Arulepp  M. Lätt  E. Lust 《Carbon》2006,44(11):2122-2129
A variety of nanoporous carbide-derived carbon materials possessing improved pore size distributions were synthesised from a mixture of titanium carbide and titanium dioxide. It was observed that TiO2 caused partial oxidation of the carbon particles created during high-temperature chlorination of the TiC/TiO2 mixture. The resulting carbon powder is characterised by narrow pore size distribution with a peak pore size of around 8 Å and a noticeably smaller amount of pores below 6-7 Å compared to the carbon derived from pure TiC. Electrochemical and electrical double-layer characteristics of novel carbon materials in the acetonitrile solution of triethylmethylammonium tetrafluoroborate were obtained by using cyclic voltammetry and constant current methods. Carbon electrode materials of this study were tested over the temperature range from −10 °C to +60 °C. Results of this study affirmed a great potential of the synthesised advanced carbide-derived carbon, whose specific double-layer capacitance reaches approximately 90 F cm−3 and 125 F g−1.  相似文献   

4.
J. Leis  M. Arulepp  A. Perkson 《Carbon》2010,48(14):4001-4732
Carbide-derived carbon (CDC) was synthesised from molybdenum carbide by extracting Mo atoms in a high-temperature chlorine atmosphere. A systematic study of the influence of pore size on the electrical double layer (EDL) performance was carried out with carbons synthesised in the temperature interval of 500-900 °C. Strong effect of chlorination conditions on the pore-size distribution was noticed that gives wide possibilities to vary the pore structure of Mo2C derived carbons. An average pore size of carbons varied between 1 nm and 2 nm depending on chlorination temperature. The relationships were established between the pore-size distribution and the electrochemical performance of micro/mesoporous carbons. The EDL characteristics of carbon materials in a propylene carbonate solution of triethylmethylammonium tetrafluoroborate were obtained using the cyclic voltammetry at ΔE of 3.8 V and the constant current methods in a 3-electrode test cell. A novel test method was developed to demonstrate the power characteristics of the electrode materials. The results of this study affirmed the great potential of Mo2C derived carbons, whose EDL capacitance reaches ∼65 F cm−3 and 132 F g−1 and the 20-s discharge power density is 2.1 W cm−3.  相似文献   

5.
Nanostructured carbide-derived carbons were synthesized from α-tungsten carbide (WC-CDC) powder via gas phase chlorination within the temperature range from 700 to 1100 °C. Analysis of X-ray diffraction results showed that WC-CDC are mainly amorphous consisting of relatively small graphitic crystallites and the apparent crystallite size along the a- and c-directions of graphite structure La ≈ 4 nm and Lc ≈ 1.5 nm were calculated. The first-order Raman spectra showed the graphite-like absorption peak at ∼1590 cm−1 and the disorder-induced peak at ∼1350 cm−1. The low-temperature N2 sorption experiments were performed and a specific micropore surface area up to 1550 m2 g−1 and total pore volume up to 0.89 cm3 g−1 were obtained for WC-CDC synthesized at T = 1100 °C. High-resolution transmission electron microscopy and electron energy loss spectroscopy studies revealed that WC-CDC prepared at 800 °C correspond to the highly disordered carbon material but WC-CDC prepared at 1100 °C showed partial graphitization.  相似文献   

6.
To achieve a high-energy-density lithium electrode, high-density LiFePO4/C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO4 as a precursor, glucose as a C source, and Li2CO3 as a Li source, in a pipe furnace under an atmosphere of 5% H2-95% N2. The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO4/carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO4/carbon composite powder with a carbon content of 7% reached 1.80 g m−3. The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g−1, respectively, with a volume capacity of 300.6 mAh cm−3, at a 0.1C rate. At a rate of 5C, the LiFePO4/carbon composite shows a high discharge capacity of 98.3 mAh g−1 and a volume capacity of 176.94 mAh cm−3.  相似文献   

7.
M. Richou  R. Denoyel  P. Roubin 《Carbon》2009,47(1):109-3508
Nitrogen and carbon dioxide adsorption experiments have been used to investigate the porosity of carbon deposits formed in the Tore Supra tokamak as a consequence of the erosion of the plasma-facing components. We compare BET, αs-, and Dubinin-Raduskevich methods to distinguish between micropore volume (∼0.04 cm3 g−1) and external surface (∼90 m2 g−1). Consistent results have been obtained for nitrogen and carbon dioxide, and the smallest pores are shown to be reversibly closed and opened under air exposure and outgassing at 600 °C, respectively, probably due to blocking of pore entrances by surface oxides. Pore size distribution is calculated using the non-local density functional theory: a novel and straightforward method is used to fit the experimental isotherms by Lorentzian distributions of pores centered in some relevant pore size regions. We thus show that the tokamak sample micropores are mainly ultra-micropores (∼75%) whose widths are centered at 0.6 nm. This latter result is in good qualitative agreement with the outgassing effect and in good quantitative agreement with what is deduced from αs-plot.  相似文献   

8.
Siyu Li  Dingcai Wu  Ruowen Fu 《Carbon》2010,48(3):839-6802
A one-step nanocasting method to prepare a bimodal mesoporous carbon from a highly hydrophobic carbon precursor, i.e., petroleum pitch, has been successfully developed by adopting tetrahydrofuran and hydrofluoric acid as solvent and catalyst, respectively, for the gelation reaction of tetraethyl orthosilicate and water. Experimental results show that the introduction of proper amounts of petroleum pitch does not hamper this gelation reaction, thus forming a uniform silica/carbon composite. It was found that the as-prepared nanoporous carbon has a three-dimensional 3.4 nm-sized wormholelike mesoporous network with well-distributed 17.1 nm-sized particlelike mesopores. Such a bimodal mesoporous carbon has a high Brunauer-Emmett-Teller surface area (782 m2 g−1) and a very large total pore volume (3.0 cm3 g−1).  相似文献   

9.
Micelle-encapsulated multi-walled carbon nanotubes (MWCNTs) with sodium dodecyl sulfate (SDS) were used as catalyst support to deposit platinum nanoparticles. High resolution transmission electron microscopy (HRTEM) images reveal the crystalline nature of Pt nanoparticles with a diameter of ∼4 nm on the surface of MWCNTs. A single proton exchange membrane fuel cell (PEMFC) with total catalyst loading of 0.2 mg Pt cm−2 (anode 0.1 and cathode 0.1 mg Pt cm−2, respectively) has been evaluated at 80 °C with H2 and O2 gases using Nafion-212 electrolyte. Pt/MWCNTs synthesized by using modified SDS-MWCNTs with high temperature treatment (250 °C) showed a peak power density of 950 mW cm−2. Accelerated durability evaluation was carried out by conducting 1500 potential cycles between 0.1 and 1.2 V with 50 mV s−1 scan rate, H2/N2 at 80 °C. The membrane electrode assembly (MEA) with Pt/MWCNTs showed superior performance stability with a power density degradation of only ∼30% compared to commercial Pt/C (70%) after potential cycles.  相似文献   

10.
A set of activated carbon materials non-oxidised and oxidised, were successfully prepared from two different lignocellulosic precursors, almond shell and vine shoot, by physical activation with carbon dioxide and posterior oxidation with nitric acid. All samples were characterised in relation to their structural properties and chemical composition, by different techniques, namely nitrogen adsorption at 77 K, elemental analysis (C, H, N, O and S), point of zero charge (PZC) and FTIR. A judicious choice was made to obtain carbon materials with similar structural properties (apparent BET surface area ∼ 850-950 m2g1, micropore volume ∼ 0.4 cm3g1, mean pore width ∼ 1.2 nm and external surface area ∼ 14-26 m2g1). After their characterisation, these microporous activated carbons were also tested for the adsorption of phenolic compounds (p-nitrophenol and phenol) in the liquid phase at room temperature. The performance in liquid phase was correlated with their structural and chemical properties. The oxidation had a major impact at a chemical level but only a moderate modification of the porous structure of the samples. The Langmuir and Freundlich equations were applied to the experimental adsorption isotherms of phenolic compounds with good agreement for the different estimated parameters.  相似文献   

11.
This study shows that carbide-derived carbons (CDCs) with average pore size distributions around 0.9-1 nm and effective surface areas of 1300-1400 m2 g−1 provide electrochemical double-layer capacitors with high performances in both aqueous (2M H2SO4) and aprotic (1M (C2H5)4NBF4 in acetonitrile) electrolytes.In the acidic electrolytic solution, the gravimetric capacitance at low current density (1 mA cm−2) can exceed 200 F g−1, whereas the volumetric capacitance reaches 90 F cm−3. In the aprotic electrolyte they reach 150 F g−1 and 60 F cm−3.A detailed comparison of the capacitive behaviour of CDCs at high current density (up to 100 mA cm−2) with other microporous and mesoporous carbons indicates better rate capabilities for the present materials in both electrolytes. This is due to the high surface area, the accessible porosity and the relatively low oxygen content.It also appears that the surface-related capacitances of the present CDCs in the aprotic electrolyte are in line with other carbons and show no anomalous behaviour.  相似文献   

12.
Carbon-coated LiFePO4 (C-LiFePO4) with micron particle size (6 μm) and high tap density (1.6 g cm−3) was prepared from spherical FePO4·2H2O powder via the co-precipitation method. The C-LiFePO4 powder was calcined at temperatures between 650 and 800 °C. The 6 μm C-LiFePO4 prepared at 800 °C exhibited an excellent rate capability, delivering 150 mAh g−1 on discharge at the 0.1 C-rate and 108 mAh g−1 at the 5 C-rate. The volumetric capacity of the 6 μm C-LiFePO4 corresponded to 225 mAh cm−3, since the large secondary particles (6 μm) C-LiFePO4 sufficiently allowed tight packing of the particles. The 6 μm C-LiFePO4 powder with high tap density makes an attractive positive electrode candidate for lithium-ion batteries designed for high energy density.  相似文献   

13.
Silica nanoparticles were slip cast into porous stainless steel supports, which were then coated with polyfurfuryl alcohol and pyrolyzed to make nanoporous carbon membranes. The single gas permeances of the membranes formed on modified stainless steel supports were found to be between two and three orders of magnitude larger than the permeances of nanoporous carbon membranes (<10−11 mol m−2 s−1 Pa−1) synthesized on unmodified supports. Importantly, these high permeances (10−8-10−9 mol m−2 s−1 Pa−1) were achieved within the same range of O2/N2 selectivities (3-5) that we have observed for single gases permeating at much lower fluxes through the nanoporous carbon membranes on unmodified supports. The nanoporous carbon membranes also were formed by combining the silica nanoparticles with polyfurfuryl alcohol resin and applying the mixture directly onto an unmodified support. This simpler process was as effective in producing selective-high permeance membranes. In both cases the significant increase in permeance without loss of selectivity is attributed to the silica nanoparticles filling the macropores of the stainless steel supports, thereby leading to the formation of very thin but selective carbon layers.  相似文献   

14.
Chemical activation of resorcinol-formaldehyde aerogels with phosphoric acid results in materials containing both intra-particle microporosity (pore volume ∼0.18 cm3g−1 and mean-pore-width ∼1 nm) and inter-particle micro/mesoporosity. The latter forms as a result of partial collapse of the mesopore structure of the organic aerogel and can be controlled by varying the phosphoric acid/organic aerogel ratio. Increasing this ratio leads to higher pore volume and size and it was possible to obtain micro/mesopore volumes as high as 1.23 cm3g−1 with pore widths up to ∼7 nm. Over 90% of these pores were accessible even after blocking all of the ultramicroporosity by pre-adsorption of n-nonane.  相似文献   

15.
The activated carbon beads (ACB) are prepared by a new preparation method, which is proposed by mixing the coal tar pitch and fumed silica powder at a certain weight ratio and activation by KOH at different weight ratios and different temperatures. The BET surface area, pore volume and average pore size are obtained based on the nitrogen adsorption isotherms at 77 K by using ASAP 2010 apparatus. The results show that our samples have much high specific surface area (SSA) of 3537 m2 g−1and high pore volume value of 3.05 cm3 g−1. The percentage of mesopore volume increases with the weight ratio of KOH/ACB ranging from 4% to 72%. The electrochemical double layer capacitors (EDLCs) are assembled with resultant carbon electrode and electrolyte of 1 mol L−1 Et4NBF4/PC. The specific capacitance of the ACB sample could be as high as 191.7 F g−1 by constant current charge/discharge technique, indicating that the ACB presents good characteristics prepared by the method proposed in this work. The investigation of influence of carbon porosity structure on capacitance indicates that the SSA plays an important role on the capacitance and all the pore sizes of less than 1 nm, from 1 to 2 nm and larger than 2 nm contribute to the capacitance. Mesopore structure is beneficial for the performance at high current density.  相似文献   

16.
Activated carbon binderless monoliths with high consistency and large porosity, synthesised from a mesophase pitch, are studied as electrodes for supercapacitors. The electrochemical cells prepared provided high capacitance values in sulphuric acid media (334 F g−1) and very low electrical resistivity, which results in a very efficient energy storage device (12 Wh Kg−1 maximum energy density and 12,000 W Kg−1 maximum power density). Long-term cycling experiments showed excellent stability with a reduction of the initial capacitance values of 19% after performing 23,000 galvanostatic cycles at ∼300 mA g−1.  相似文献   

17.
Porous carbons with high-volumetric capacitance in aqueous electric double layer capacitors (EDLCs) were simply prepared by poly(vinylidene chloride) (PVDC) carbonization at high temperature without activation or any other additional processes. The PVDC-derived carbon is microporous with Brunauer-Emmett-Teller (BET) surface area about 1200 m2 g−1. As it possesses not only high-gravimetric capacitance (262 F g−1) but also high-electrode density (0.815 g cm−3), the PVDC-derived carbon present an outstanding high-volumetric capacitance of 214 F cm−3, twice over of the commercial carbon Maxsorb-3 with a high-surface area of 3200 m2 g−1. The PVDC-derived carbon also exhibit good rate performance, indicating that it is a promising electrode material for EDLCs.  相似文献   

18.
Five nanoporous carbons (NPCs) were prepared by polymerizing and then carbonizing carbon precursor of furfuryl alcohol accommodated in a porous metal-organic framework (MOF-5, [Zn4O(bdc)3], bdc = 1,4-benzenedicarboxylate) template. The Brunauer-Emmett-Teller (BET) surface areas for five NPC samples obtained by carbonizing at the temperatures from 530 to 1000 °C fall into the range from 1140 to 3040 m2 g−1 and the dependence of BET surface areas on carbonization temperatures shows a “V” shape. All the five NPC samples have a pore size distribution centered at about 3.9 nm. As electrode materials for supercapacitor, the NPC samples obtained at the temperatures higher than 600 °C display the ideal capacitor behaviors and give rise to almost constant specific capacitance (above 100 F g−1 at 5 mV s−1) at various sweep rates, which is associated with their mesoporous characteristics. However, the NPC sample with the highest BET surface area (3040 m2 g−1) obtained by carbonizing at 530 °C gives a unusually low capacitance (12 F g−1 at 5 mV s−1), which may be attributed to the poor conductivity of the carbon material due to the low carbonization temperature.  相似文献   

19.
A series of coal-based activated carbons representing a wide range of mesopore content, from 16.7 to 86.9%, were investigated as an electrode in electric double layer capacitors (EDLCs) in 1 mol l−1 H2SO4 and 6 mol l−1 KOH electrolytic solutions. The activated carbons (ACs) used in this study were produced from chemically modified lignite, subbituminous and bituminous coals by carbonization and subsequent activation with steam. The BET surface area of ACs studied ranged from 340 to 1270 m2 g−1. The performance of ACs as EDLC electrodes was characterized using voltammetry, galvanostatic charge/discharge and impedance spectroscopy measurements. For the carbons with surface area up to 1000 m2 g−1, the higher BET surface area the higher specific capacitance (F g−1) for both electrolytes. The surface capacitance (μF cm−2) increases also with the mesopore content. The optimum range of mesopore content in terms of the use of ACs studied for EDLCs was found to be between 20 and 50%. A maximum capacitance exceeding 160 F g−1 and a relatively high surface capacitance about 16 μF cm−2 measured in H2SO4 solution were achieved for the AC prepared from a sulfonated subbituminous coal. This study shows that the ACs produced from coals exhibit a better performance as an electrode material of EDLC in H2SO4 than in KOH electrolytic solutions. For KOH, the capacitance per unit mesopore surface is slightly lower than that referred to unit micropore surface (9.1 versus 10.1 μF cm−2). However, in the case of H2SO4 the former capacitance is double and even higher compared with the latter (23.1 versus 9.8 μF cm−2). On the other hand, the capacitance per micropore surface area is the same in both electrolytes used, about 10.0 μF cm−2.  相似文献   

20.
Electrochromic devices incorporating an electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) film and a free standing, transparent film of a proton conducting polymer electrolyte with high ambient temperature ionic conductivity of 10−2 S cm−1 have been fabricated with and without the ion storage electrodeposited Prussian blue (PB) counter electrode layer. While coloration efficiency increases as a function of applied potential in the sole PEDOT device with largest values of CE(max,VIS) ∼ 120 cm2 C−1 and CE(max,NIR) ∼ 133 cm2 C−1 attained at Vc = −1.9 V, the PEDOT:PB device shows a digression from this trend. Much higher coloration efficiencies in the visible (247 cm2 C−1 at 570 nm) and NIR (116 cm2 C−1 at 1100 nm) regions are achieved for the PEDOT:PB device at a relatively lower reducing voltage of −0.8 V. The PEDOT:PB device shows fast switching redox process (tc = 2.6 s and tb = 1.3 s for a 50% optical contrast at 632.8 nm) and a highly reversible charge density as the ratio of Qinserted to Qextracted was found to vary between 0.8 and 1.0. When switched between the clear and blue states for 2000 cycles, the insignificant drop in peak current density maxima observed for the PEDOT:PB device, i.e. the good cycling stability, the facile fabrication of device assembly, the ease of scaling up the electrolyte and electrochromic coatings, indicate that this method can be adapted as a simple and inexpensive alternative to conventional electrochromic windows with high cost components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号