首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nano-structures find their application in bio-medicine. In this work we functionalized carbon nano-particles (CNPs) with nitrogen (amine) groups. The CNPs were then chemically grafted onto the surface of polyethyleneterephthalate (PET) and high density polyethylene (HDPE) previously treated (activated) in argon plasma. Transmission electron microscopy (TEM) was used for investigation of the size and form of reactivated CNPs. Chemical composition of the modified polymer surfaces was determined by Raman and X-ray photoelectron (XPS) spectroscopies and by an electrokinetic analysis (zeta potential) as well. Surface contact angle was measured by goniometry. Surface roughness and morphology of polymers grafted with CNPs was studied using atomic force microscopy (AFM). Adhesion and proliferation of vascular smooth muscle cells (VSMC) on CNPs grafted HDPE and PET surfaces were studied in vitro. TEM results show that CNPs aggregate in water solution. Successful grafting of CNPs on the HDPE and PET surfaces was proved by XPS and Raman spectroscopies (amorphous carbon in the form of sp2 hybridization) and by AFM. CNPs grafting of polymer surfaces leads to a decrease of contact angle and also to a change in surface zeta potential. Grafting with CNPs has a positive effect on adhesion and proliferation of VSMC on polymers’ surface.  相似文献   

2.
Linear Polystyrene (PS) was grafted onto the convex surfaces of multiwalled carbon nanotubes (MWCNTs). Bromine-terminated polystyrene synthesized by atom transfer radical polymerization (ATRP) was directly reacted with MWCNTs under ATRP conditions using CuBr/2,2′-bipyridine as catalyst. The PS-grafted MWCNT samples were characterized by scanning electron microscopy, transmission electron microscopy, FT-IR spectra, Raman spectra, 1H NMR, UV-vis spectra, thermal gravimetric analyses, and X-ray diffraction. The products can dissolve in organic solvents such as 1,2-dichlorobenzene, tetrahydrofuran and chloroform to form well-dispersed solutions. Optical limiting property measurements in chloroform were carried out at 532 nm using the open-aperture z-scan technique. The results demonstrate that the samples preserve good optical limiting properties when the polymer is covalently attached to the carbon nanotube.  相似文献   

3.
Thin boron nitride films were deposited onto outer surfaces of multiwall carbon nanotubes (MWCNTs) by dip coating, which involves infiltration by boric acid solutions and subsequent nitridation of the boron oxide in ammonia flow at 1050 °C. The overall composition of the samples was determined by electron energy loss (EELS) and X-ray photoelectron spectroscopy (XPS), the surface composition and chemical structure of the BN coatings by XPS, the morphology of the BN/MWCNT composites by scanning and transmission electron microscopy (SEM, TEM), and the resistance against oxidation at elevated temperatures by thermal analysis (TGA). It was proved that single and multilayer BN coverage were achieved at the applied experimental conditions, and the coated samples showed significantly increased oxidation resistance compared to the uncoated MWCNTs.  相似文献   

4.
Poly(3-hydroxyalkanoate)s, PHAs, have been covalently grafted onto the surface of multi-walled carbon nanotubes, MWCNTs, providing nanofillers (MWCNT-graft-PHAs) with enhanced compatibility and reinforcement effect towards PHAs. MWCNTs were first modified by in-situ generated diazonium cations obtained from a hydroxyl-containing aniline derivative, yielding MWCNTs with reactive hydroxyl surface groups, MWCNT-OH. Then, MWCNT-graft-PHAs were obtained by direct, i.e. without using any catalyst, transesterification approach. The successful chemical modification of MWCNTs surface was evidenced by Raman spectroscopy and XPS analysis confirming the covalent grafting of PHA on MWCNT. 3-Dimension mats were further produced through electrospinning of a PHA/MWCNT-graft-PHA solution providing nanocomposites with well-defined nanofibrous morphology. No aggregation of the MWCNTs was evidenced by SEM attesting that the grafting of PHA onto MWCNT improved their dispersion within the PHA matrix and consequently, the properties of the corresponding nanomaterials. Indeed, mechanical analysis results have shown that nanofibers loaded with MWCNT-graft-PHA (3 wt%) displayed excellent properties with an increase (+41%) of the tensile strain at break without any decrease of the high elastic modulus as compared to pristine PHA (131 MPa).  相似文献   

5.
Bo Gao 《Electrochimica acta》2009,54(13):3561-3567
This work describes an effective method to synthesize structurally uniform composite of nickel oxide/benzenesulfonic functionalized multiwalled carbon nanotubes composite (NiO/f-MWCNTs) using benzenesulfonic MWCNTs as the substrate. Benzenesulfonic group here is bifunctional both for solubilizing MWCNTs into aqueous solution and for tethering Ni2+ precursor onto MWCNTs surfaces to facilitate the follow-up chemical deposition of NiO by supplying surface binding and anchoring groups. The composite has a uniform surface dispersion and large coverage of NiO onto f-MWCNTs, which is characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscope, cyclic voltammetry and galvanostatic charge/discharge measurements. The NiO/f-MWCNTs composite improved the utilization of electrochemical capacitive materials and delivered capacity of 384 F/g at the constant current of 0.20 A/g due to f-MWCNTs as substrate.  相似文献   

6.
Yanhui Xu 《Electrochimica acta》2007,52(16):5140-5149
Pt nano-clusters (nano-Pt) have been selectively attached to the open ends and defect sites of mildly oxidized multi-wall carbon nanotubes (MWCNTs) on a glassy carbon electrode (GCE) by a cyclic voltammetry (CV) electrodeposition method. The nano-Pt functionalized MWCNTs were characterized by XPS, XRD, FE-SEM and electrochemical techniques. The catalytic activity of the nano-Pt functionalized MWCNTs were tested by an oxygen reduction reaction (ORR) and a methanol oxidation reaction (MOR). Taking the ORR as an example, we found that the electrocatalytic activity of the nano-Pt functionalized MWCNTs can be well tuned by varying the cycle number and the PtCl62− concentration of the deposition conditions. The average size of the nano-Pt was 123 nm, and it was constituted of nano-crystallite of an average size of 10.8 nm. Though the large nano-Pt particles (100-150 nm) were only attached on the open ends and defect sites of the MWCNTs, which were very different from the highly dispersed small Pt nanoparticles (<10 nm) on carbon nanotubes reported by other research groups. In our method, excellent electrocatalytic activity of the nano-Pt functionalized MWCNTs for ORR and MOR can be obtained. The mechanisms for nano-Pt deposition are proposed.  相似文献   

7.
We report the single-step synthesis of Ge nanowires encapsulated within multi-walled carbon nanotubes (MWCNTs) from a phenyltrimethylgermane (C6H5Ge(CH3)3) precursor, using a simple chemical vapor deposition (CVD) method. The MWCNT/germanium nanowires were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) measurements. TEM analysis reveals that the nanowires consist of well crystallized Ge cores which are completely encapsulated by the sheath-like MWCNTs, the latter corresponding to a layer thickness of 5-10 nm. SEM images, corresponding to various stages of nanowire growth, indicate that MWCNT growth occurs at Ge nanoparticles and that the growing MWCNTs carry Ge as nanowires away from the nanoparticles. By optimizing the CVD parameters, nanowires can be produced with uniform length and diameter in the range 6-10 μm and 200-300 nm, respectively.  相似文献   

8.
Multi-wall carbon nanotubes (MWCNTs) were grown by thermal chemical vapor deposition (thermal CVD) of CH4 by using Ni-MCM-41 as the catalyst. Methane pyrolysis has been performed in a quartz tube reactor over the catalyst surface to form carbon atoms via dehydrogenation process. The migration and rearrangement of the surface carbon atoms result in the formation of MWCNTs. Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to determine the morphologies and structures of CNTs, and Raman spectroscopy was exploited to analyze their purity with the relative intensity between the D-band (Disorder band) in the vicinity of 1,350 cm−1 which is characteristic of the sp3 structure and G-band (Graphitic band) in vicinity of 1,580 cm−1 which is characteristic of the sp2 structure. In addition, the controlling factors of methane pyrolysis such as the catalyst composition; the reaction temperature, and the methane flow rate on the formation of MWCNTs were investigated to optimize the structure and yield of MWCNTs. SEM/TEM results indicate that the yield of the CNTs increases with increasing Ni concentration in the catalyst. The optimized reaction temperature to grow CNT is located between 640 and 670 °C. The uniform and narrow diameter MWCNTs form at lower flow rate of methane (∼30 sccm), and non-uniform in diameter and disorder structure of MWCNTs are observed at higher flow rate of methane. This is consistent with Raman analysis that the relative intensity of I D/I G increases with increasing methane flow rate. The formation mechanisms of the MWCNTs on the Ni-MCM-41 catalyst have been determined to be a Tip-Growth mode with a nanoscale catalyst particle capsulated in the tip of the CNT.  相似文献   

9.
Direct functionalized carbon nanotubes (CNTs) were utilized to form the heat flow network for epoxy composites through covalent integration. A method of preparing a fully heat flow network between benzenetricarboxylic acid grafted multi-walled carbon nanotubes (BTC-MWCNTs) and epoxy matrix is described. A Friedel-Crafts modification was used to functionalize MWCNTs effectively and without damaging the MWCNT surface. Raman spectra, X-ray photoelectron spectra and thermogravimetric analysis reveal the characteristics of functionalized MWCNTs. The scanning electron microscope images of the fracture surfaces of the epoxy matrix showed BTC-MWCNTs exhibited higher solubility and compatibility than pristine-MWCNTs. The MWCNTs/epoxy composites were prepared by mixing BTC-MWCNTs and epoxy resin in tetrahydrofuran, followed by a cross-linking reaction with a curing agent. The BTC was grafted onto the MWCNTs, creating a rigid covalent bond between MWCNTs and epoxy resin and forming an effective network for heat flow. The effect of functionalized MWCNTs on the formation of the heat flow network and thermal conductivity was also investigated. The thermal conductivity of composites exhibits a significant improvement from 0.13 to 0.96 W/m K (an increase of 684%) with the addition of a small quantity (1-5 vol%) of BTC-MWCNTs.  相似文献   

10.
A hierarchical reinforcement, which was used to improve the interfacial properties of bismaleimide (BMI) composites, was prepared by grafting functionalized graphene oxide (GO) onto a carbon fiber surface. The GO and carbon fibers were first functionalized separately to create interactional functional groups on their surfaces. The grafting process was then realized by an amidation reaction of the amine and acyl chloride function groups formed on GO and carbon fibers, respectively. The surface groups of functionalized GO and carbon fibers were identified by an X‐ray photoelectron spectroscopy (XPS). The resulting reinforcement was further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and dynamic contact angle analysis. Experimental results showed that the functionalized GO were successfully grafted onto the carbon fibers surfaces and significantly increased the surface energy of carbon fibers. The study also indicated that the prepared hierarchical reinforcement could significantly improve the interfacial adhesion of resulting BMI composite. POLYM. ENG. SCI., 58:886–893, 2018. © 2017 Society of Plastics Engineers  相似文献   

11.
A novel and efficient method was developed for surface‐modification of Kevlar fibers by multi‐wall carbon nanotubes (MWCNTs). Kevlar fibers were immersed in a solution mixed with Hexamethylene diisocyanate, 1,4‐diazabi‐cyclo [2,2,2] octane (DABCO), and toluene to introduce pendant amine groups before the COCl‐functionalized carbon nanotubes were chemically grafted onto the surface of modified fibers under ultrasonic condition. The characterization of resulting fiber involved in SEM, infrared spectroscopy, and tensile measurement. Results indicated over 20% of the fiber surface were coated by MWCNTs even after washing, which indicated a good adhesion. Furthermore, the mean value of tensile strength of Kevlar fiber was improved by 12% compared with original one. And the interlaminar shear strength (ILSS) of the fiber‐reinforced bismaleimides composite was increased by 30%. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Multi-walled carbon nanotubes (MWCNTs) modified with iron tetramethoyxphenyl-porphyrin chloride (FeTMPP-Cl) and heat treated are active towards electrocatalytic oxygen reduction in acidic media. The activity slightly depends on the heat treatment temperature (850 < 550 °C) and the amount of porphyrin deposited onto the nanotubes before the heat treatment step. In comparison with as-received MWCNTs no increase in activity has been found with iron phenanthroline or iron acetate impregnated and heat treated MWCNTs. When MWCNTs are pretreated in an oxidation step using HNO3, there is only a slight increase in activity after FeTMPP-Cl modification and heat treatment compared to the not pretreated MWCNTs. The HNO3 treatment itself, however, leads to an increase in activity of the unmodified MWCNTs. TEM-measurements revealed an amorphous layer surrounding the MWCNTs after HNO3 treatment, while XPS showed an increased amount of oxygen functional groups. It is suggested that there are different kinds of active sites at the catalyst surface, the first ones consisting of oxygen functionalities or other entities introduced by the HNO3 treatment, and the second ones containing nitrogen (and probably iron) introduced via the porphyrin. Pyridine-type nitrogen has been found by XPS after heat treatment at both temperatures, indicating that the active sites are already formed at 550 °C.  相似文献   

13.
Fengbo Li 《Carbon》2006,44(1):128-132
N-doped porous carbon microspherules were developed through controlled carbonization of the copolymer of vinylidene chloride and acrylonitrite. The carbon precursors were prepared by an inorganic-organic hybrid route. Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) analysis showed the formation of N-doped carbon spherules. N2 sorption analysis showed that the resultant carbon materials have a BET surface area of 692 m2/g. Nickel nanoparticles supported over them are kept in a well-dispersed state. Electron Probe Microanalysis (EPMA) and Transmission Electron Microscopy (TEM) showed nickel nanoparticles are quite monodisperse. Analysis of XPS spectra of the samples with different surface nitrogen atomic concentration demonstrated that nitrogen species on the carbon surfaces have a great impact on the dispersion state of the mounted metal nanocrystals.  相似文献   

14.
We outline here the fabrication of a sensitive electrochemical DNA biosensor for the detection of sequence-specific target DNA. Zinc oxide nanowires (ZnONWs) were first immobilized on the surface of a glassy carbon electrode. Multi-walled carbon nanotubes (MWCNTs) with carboxyl groups were then dropped onto the surface of the ZnONWs. Gold nanoparticles (AuNPs) were subsequently introduced to the surface of the MWNTs/ZnONWs by electrochemical deposition. A single-stranded DNA probe with a thiol group at the end (HS-ssDNA) was covalently immobilized on the surface of the AuNPs by forming an Au-S bond. Scanning electron microscopy (SEM) and cyclic voltammetry (CV) were used to investigate the film assembly process. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of [Ru(NH3)6]3+ bounding to double-stranded DNA (dsDNA). The incorporation of ZnONWs and MWCNTs in this sensor design significantly enhances the sensitivity and the selectivity. This DNA biosensor can detect the target DNA quantitatively in the range of 1.0 × 10−13 to 1.0 × 10−7 M, with a detection limit of 3.5 × 10−14 M (S/N = 3). In addition, the DNA biosensor exhibits excellent selectivity, even for single-mismatched DNA detection.  相似文献   

15.
X.B. Yan  T. Xu  G. Chen  H.W. Liu  S.R. Yang 《Carbon》2004,42(15):3103-3108
Hydrogenated amorphous carbon (a-C:H) films were deposited on Si substrates by electrolysis in a methanol solution at ambient pressure and a low temperature (50 °C), using various deposition voltages. The influence of deposition voltage on the microstructure of the resulting films was analyzed by visible Raman spectroscopy at 514.5 nm and X-ray photoelectron spectroscopy (XPS). The contents of sp3 bonded carbon in the various films were obtained by the curve fitting technique to the C1s peak in the XPS spectra. The hardness and Young’s modulus of the a-C:H films were determined using a nanoindenter. The Raman characteristics suggest an increase of the ratio of sp3/sp2 bonded carbon with increasing deposition voltage. The percentage of sp3-bonded carbon is determined as 33–55% obtained from XPS. Corresponding to the increase of sp3/sp2, the hardness and Young’s modulus of the films both increase as the deposition voltage increases from 800 V to 1600 V.  相似文献   

16.
We report on a solution-based method for the chemical grafting of multiwall carbon nanotubes (MWCNTs) onto the surface of glass fibers (GFs). MWCNTs and GFs were modified to expose the functional moieties for the formation of an ‘amide’ chemical bond. Treatment with strong acids introduces carboxylic groups to the MWCNT outer walls, which are converted to carbonyl chloride groups. The GFs are coupled with gamma-aminopropyltriethoxysilane (γ-APS) yielding amine surface functionalities (GF-APS), and acyl chloride modified MWCNTs (MWCNT-COCl) are covalently bonded in a dip-coating deposition process. The surface morphology and electrical properties of single fibers grafted with CNTs (GF-g-CNT) are studied and compared to physically adsorbed ones (GF-ad-CNT). The GF-g-CNT exhibited a fully CNT surface coverage and ten times higher electrical conductivity compared to the GF-ad-CNT. X-ray photoelectron spectroscopy (XPS), scanning electron and atomic force microscopy (SEM, AFM) were used to characterize the fibers after each step of treatment. Single filaments were embedded in an epoxy matrix to investigate the interphase microstructures, through transmission electron microscopy (TEM). Single-fiber pull out (SFPO) tests accompanied with fractographic analysis of the pulled-out fibers were performed to study the interfacial adhesion strength. The results suggest that GFs with chemically grafted MWCNTs are promising multi-functional reinforcements.  相似文献   

17.
We have produced hydrogen-free diamond-like carbon (DLC) films by vacuum arc deposition for use as wall coating material in ultracold neutron (UCN) applications. The sp3 fraction, the main quality factor for DLC used in UCN applications, was varied from 0.4 to 0.9, the coating thickness between 10 nm and 120 nm. The samples were characterized by using X-ray Absorption Near-Edge Spectroscopy (XANES), X-ray induced Photoelectron Spectroscopy (XPS), Laser induced surface Acoustic Waves (LAwave), cold neutron reflectometry and Raman spectroscopy at visible excitation wavelength. We observe reasonable agreement between the different results for film thicknesses below 20 nm. For larger thickness, we find that the surface-sensitive methods XPS and XANES yield smaller sp3 fractions (by up to 20%) than the bulk-sensitive LAwave, being consistent with the assumption of a lower-density surface layer on a nominal-density bulk layer.  相似文献   

18.
Thermally-assisted (160 °C) liquid phase grafting of linear alkene molecules has been performed simultaneously on amorphous carbon (a-C) and hydrogen passivated crystalline silicon Si(111):H surfaces. Atomically flat a-C films with a high sp3 average surface hybridization, sp3 / (sp2 + sp3) = 0.62, were grown using pulsed laser deposition (PLD). Quantitative analysis of X-ray photoelectron spectroscopy, X-ray reflectometry and spectroscopic ellipsometry data show the immobilization of a densely packed (> 3 × 1014 cm? 2) single layer of organic molecules. In contrast with crystalline Si(111):H and other forms of carbon films, no surface preparation is required for the thermal grafting of alkene molecules on PLD amorphous carbon. The molecular grafted a-C surface is stable against ambient oxidation, in contrast with the grafted crystalline silicon surface.  相似文献   

19.
Poor crystallined α-MnO2 grown on multi-walled carbon nanotubes (MWCNTs) by reducing KMnO4 in ethanol are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Brunauer-Emmett-Telle (BET) surface area measurement, which indicate that MWCNTs are wrapped up by poor crystalline MnO2 and BET areas of the composites maintain the same level of 200 m2 g−1 as the content of MWCNTs in the range of 0-30%. The electrochemical performances of the MnO2/MWCNTs composites as electrode materials for supercapacitor are evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge measurement in 1 M Na2SO4 solution. At a scan rate of 5 mV s−1, rectangular shapes could only be observed for the composites with higher MWCNTs contents. The effect of additional conductive agent KS6 on the electrochemical behavior of the composites is also studied. With a fixed carbon content of 25% (MWCNTs included), MnO2 with 20% MWCNTs and 5% KS6 has the highest specific capacitance, excellent cyclability and best rate capability, which gives the specific capacitance of 179 F g−1 at a scan rate of 5 mV s−1, and remains 114.6 F g−1 at 100 mV s−1.  相似文献   

20.
An easy method for preparing polymer-grafted multi-walled carbon nanotubes (MWCNTs) with high graft yields was developed by using free radical graft polymerization (FRGP) from photoinduced surface initiating groups on MWCNTs. The surface initiating groups were first formed by UV irradiation of MWCNTs previously modified with 2,2′-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] (VA-086) (MWCNTs-OH) in the presence of benzophenone in benzene, and the subsequent FRGP of vinyl monomers was carried out consecutively at 80 °C. The surface initiating groups were homolytically cleaved to surface radicals and semipinacol radicals by thermal activation, and the surface radicals initiated FRGP. Polystyrene, poly(butyl acrylate), poly(methyl methacrylate), and poly(2-hydroxyethyl methacrylate) were successfully grafted onto the surface of MWCNTs with graft yields of 46, 26, 37, and 53 wt.%, respectively, after 15 h of FRGP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号