首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A combined method of grand canonical Monte Carlo (GCMC) simulation and statistics integral equation (SIE) for the determination of pore size distribution (PSD) is developed based on the experimental adsorption data of methane on activated carbon at ambient temperature, T=299 K. In the GCMC simulation, methane is modeled as a Lennord-Jones spherical molecule, and the activated carbon pore is described as slit-shaped with the PSD. The well-known Steele’s 10-4-3 potential is used to represent the interaction between the fluid molecule and the solid wall. Covering the range of pore sizes of the activated carbon, a series of adsorption isotherms of methane in several uniform pores were obtained from GCMC. In order to improve the agreement between the experimental data and simulation results, the PSD is calculated by means of an adaptable procedure of deconvolution of the SIE method. Based on the simulated results, we use the activated carbon with the PSD as the prototype of adsorbent to investigate adsorption. The adsorption isotherms of methane and CCl4 at 299 K in the activated carbon with the PSD are obtained. The adsorption amount of CCl4 reaches 20 mmol/g at ambient temperature and pressure. The results indicate that the combined method of GCMC and SIE proposed here is a powerful technique for calculating the PSD of activated carbons and predicting adsorption on activated carbons.  相似文献   

3.
We present a new model of adsorption on micro-mesoporous carbons based on the quenched solid density functional theory (QSDFT). QSDFT quantitatively accounts for the surface geometrical inhomogeneity in terms of the roughness parameter. We developed the QSDFT models for pore size distribution calculations in the range of pore widths from 0.4 to 35 nm from nitrogen at 77.4 K and argon at 87.3 K adsorption isotherms. The QSDFT model improves significantly the method of adsorption porosimetry: the pore size distribution (PSD) functions do not possess gaps in the regions of ∼1 nm and ∼2 nm, which are typical artifacts of the standard non-local density functional theory (NLDFT) model that treats the pore walls as homogeneous graphite-like plane surfaces. The advantages of the QSDFT method are demonstrated on various carbons, including activated carbons fibers, coal based granular carbon, water purification adsorbents, and mirco-mesoporous carbon CMK-1 templated on MCM-48 silica. The results of PSD calculations from nitrogen and argon are consistent, however, argon adsorption provides a better resolution of micropore sizes at low vapor pressures than nitrogen adsorption.  相似文献   

4.
Using perfect slit pores for the determination of the pore size distribution of activated carbons presents some drawbacks such as the observed absence of pores around 12-13 Å and usually poor correlation between simulated and experimental isotherms. In this study, we propose a model to introduce geometric heterogeneity using the randomly etched graphite approach. We calculated kernels of N2 isotherms mixing the etched pores isotherms with the perfect ones. The isotherms were calculated using biased grand canonical Monte Carlo and Lennard-Jones potentials in graphene sheets with explicit carbon atoms and solid-fluid parameters carefully adjusted. We found that the observed absence of pores around 12-13 Å was eliminated with the introduction of a few etched pores. Also, a surprising improvement of the fitting between the theoretical and the experimental isotherms was obtained. The study also showed that this approach can be used to establish a parameter (etched pore volume) that would characterize heterogeneity. Tests using real carbons showed consistently that the volume of etched pores is larger for those samples that present more heterogeneity. The obtained improvements are a strong indication that kernels with randomly etched pore models can effectively improve the pore size distribution of activated carbon.  相似文献   

5.
A method of determining pore size distribution, PSD, of carbon adsorbents based on the high pressure methane isotherm is presented. A generic software package, and an IBM compatible PC, have been used to search for a PSD in the form of a histogram. The method relies on a known local isotherm, in this case, assuming a simplified model of infinite slit shaped carbon pores.Three carbons, having very different pore structures: BPL, PX-21, and PVDC, were analyzed using the new method and the results compared with those obtained from subcritical Ar, and N2 isotherms. The analysis from the high pressure methane isotherm gave results which are different than those from the low pressure low temperature isotherms but not significantly enough to be unrealistic.  相似文献   

6.
Accurate knowledge of an adsorbent’s porosity is fundamental for scientific and industrial applications of adsorption technology. Over the last decades many approaches have been established to assess porosity of adsorbent materials by analyzing their nitrogen uptake at 77 K with volumetric measurement devices. Despite using highly sophisticated physical models, all approaches make assumptions on pore shape as well as on the interactions between adsorbent and adsorptive molecules. Subsequently, significant differences in pore size distributions are observed depending on which modeling parameters were used. The molecular probe method presented in this paper therefore restrains to a minimum of approximations by measuring isotherms of chemically similar substances of increasing molecular size. Differences in pore volume can be reduced to sterical limitations in micropores below the size of adsorptive, leading to a high-resolution pore size distribution below 0.7 nm where only few comparable methods exist. The analytical procedure was customized to take account of the amorphous and heterogeneous pore structure of activated carbon. By measuring adsorption isotherms of N2, n-hexane, iso-octane and cyclohexane on various activated carbons, it is shown that differences in pore accessibility of tested adsorptives are specific for each adsorbent. Using molecular probe molecules hence appears to be a promising method for a complementary porosity analysis of activated carbons.  相似文献   

7.
We determine the pore size distribution for five activated carbons (comprising carbide derived as well as commercial activated carbon samples) by the interpretation of experimental small angle neutron scattering (SANS) intensity profiles, based on the primary assumption of an infinitely dilute solution of hollow spherical particles. The interpretation yields the pore size distribution of the carbon samples that have predominantly micropore populations (size <20 Å), but not for carbons which have significant mesopore populations of sizes up to 48 Å and high mass fractal degrees. The pore size distribution (PSD) results based on SANS data reveal significant populations of micropores of size <6.1 Å, and mesopores of size >20 Å, which are not present in the PSD results based on adsorption isotherms of either Ar at 87 K or CO2 273 K. This inaccessible porosity becomes accessible to CO2 and Ar on heat treatment, leading to increase in the adsorption based pore volume. However, the surface area does not commensurately increase, indicating the inaccessible microporosity to predominantly comprise surface defects and roughness that are removed on heat treatment or activation. This finding sheds the light onto the evolution of porosity of activated carbons during gasification or post synthesis-treatment.  相似文献   

8.
Knowledge of the pore structure of carbon materials including micropores is crucial for applications such as double layer supercapacitors, gas separation, and other applications requiring high specific surface area materials. High surface area is always associated with fine micropores. The pore size distribution (PSD) of microporous carbons is usually evaluated from nitrogen adsorption isotherms measured at 77 K in the relative pressure range from 10−7 to 1. Due to the very slow gas diffusion into fine pores at cryogenic temperatures and low pressures, the adsorption measurements may be extremely time consuming and sometimes inaccurate when the adsorption equilibrium is difficult to achieve during the measurement. In this work, we discuss an approach in which the carbon PSD is calculated from the combined N2 and CO2 data measured in the pressure range from 1 to 760 Torr. Under such conditions, the diffusion into micropores is usually fast and equilibration times are short for both measurements. In the PSD calculations we use 2D-NLDFT models for carbons with heterogeneous surfaces (J. Jagiello and J.P. Olivier, Adsorption 19, 2013, 777–783). We show that both isotherms can be fitted simultaneously with their corresponding models and as a result the unified PSD can be obtained.  相似文献   

9.
Activated carbons are disorganized materials with variable pore size distributions (PSD). If one assumes that the porosity consists mainly of locally slit-shaped micropores, model isotherms can be obtained by computer simulations and used to assess the PSD on the basis of experimental isotherms. In the present study, CO2 isotherms have been measured at 273 K on seven well-characterized microporous carbons with average micropore widths between 0.65 and 1.5 nm and analysed with model isotherms obtained with standard Monte Carlo simulations. The resulting PSD are in good agreement with those obtained from a modified Dubinin equation, from liquid probes of molecular dimensions between 0.4 and 1.5 nm, from STM and from modelling based on CH4 adsorption at 308 K. The present study validates the determination of micropore distributions in active carbons based on CO2 isotherms, provided that no gate effects are present.  相似文献   

10.
Several series of activated carbons have been prepared from almond shells by mean of carbonization in a flow of nitrogen followed by activation in a flow of carbon dioxide. The carbonized material is essentially microporous with pore dimensions close to those of the nitrogen molecule as deduced from the comparison of nitrogen adsorption isotherms at 77 and 90 K. Activation with carbon dioxide leads to the appearance of micropores and to a considerable increase in surface area. The effects of preparation conditions on the adsorptive capacity of the carbons are also discussed.  相似文献   

11.
12.
Fractal characteristics of mesoporous carbon electrodes were investigated with various pore structures using the N2 gas adsorption method and the transmission electron microscopy (TEM) image analysis method. The mesoporous carbons with various pore structures were prepared by imprinting mesophase pitch used as a carbonaceous precursor with different colloidal silica particles. All imprinted mesoporous carbons were composed of two groups of pores produced from the carbonisation of mesophase pitch and from the silica imprinting. The overall surface fractal dimensions of the carbon specimens were determined from the analyses of the N2 gas adsorption isotherms. In order to distinguish the surface fractal dimension of the carbonisation-induced pore surface from that fractal dimension of the silica-imprinted pore surface, the individual surface fractal dimensions were determined from the image analyses of the TEM images. From the comparison of the overall surface fractal dimension with the individual surface fractal dimensions, it was recognised that the overall surface fractal dimension is crucially influenced by the individual surface fractal dimension of the silica-imprinted pore surface. Moreover, from the fact that the silica-imprinted pore surface with broad relative pore size distribution (PSD) gave lower value of the individual surface fractal dimension than that pore surface with narrow relative PSD, it is concluded that as the silica-imprinted pores comprising the carbon specimen agglomerate, the individual surface fractal dimension of that pore surface decreases.  相似文献   

13.
In this work, we show that the standard slit pore model widely used for the characterization of activated carbons may be improved by introducing structural and/or energetical heterogeneity to the surface of pore walls. The existing one dimensional slit pore model assumes graphite-like energetically uniform pore walls. As a result of this assumption adsorption isotherms calculated by the non local density functional theory (NLDFT) do not fit accurately the experimental N2 data measured for real activated carbons. Assuming a graphene-based structural framework for activated carbons and using a 2D-NLDFT treatment of the fluid density in the pores we consider two options for model pores: energetically heterogeneous (EH) and geometrically corrugated (GC). For testing, we applied these two models to the pore size analysis of porous carbons that were giving poor results of the analysis with the standard slit model. We found that the typical artifacts of the homogeneous slit pore model were eliminated. Also, the agreement of the new models with experimental data was significantly better than that of the standard slit model.  相似文献   

14.
朱子文  郑青榕  陈武  王泽浩  唐政 《化工学报》2017,68(9):3328-3335
为提高非定域密度泛函理论(NLDFT)预测活性炭孔径分布(PSD)的精度,考虑了活性炭孔壁面晶体粗糙度对结果的影响。在传统NLDFT基础上,结合吸附壁面碳原子的密度分布,推导出改进NLDFT,预测了氩在光滑及具粗糙碳晶体表面的吸附平衡,并根据87.3 K、氩在活性炭上的吸附平衡数据,在由两种NLDFT确定了不同孔径的理论等温线核后,由寻优函数确定活性炭在0.35~12 nm区间的PSD。结果表明,以改进的NLDFT预测活性炭的PSD时,确定的活性炭孔径呈连续分布,预测平衡数据的相对误差小于10%;传统NLDFT确定的孔径在1 nm处出现断点,最大的预测相对误差范围达45%。改进NLDFT能较准确预测氩在具有粗糙晶体碳表面活性炭的PSD。  相似文献   

15.
The present paper examines the adsorption of water by microporous carbons in the absence of specific interactions. The modelling of water adsorption for 293 and 310 K, using variable pore size distributions (PSD), shows that the type V isotherms follow the Dubinin-Astakhov (DA) equation and fulfill the requirement for temperature invariance. Furthermore, the parameters of the DA equation can be related in a simple way to structural properties of the model carbons. For a number of well-characterized carbons, the type V isotherms generated by combining model isotherms with the corresponding PSDs are in good agreement with the limiting isotherms at 293 and 310 K derived on the basis of a recent development of Dubinin’s theory. This approach will provide the basis for further studies including specific interactions.  相似文献   

16.
17.
Carbonaceous adsorbents with controllable pore sizes derived from carbonized pistachio shells (i.e., char) were prepared by the KOH activation and steam activation methods in this work. The pore properties including the BET surface area, pore volume, pore size distribution, and pore diameter of these activated carbons were characterized by the t-plot method based on N2 adsorption isotherms. Through varying the KOH/char ratios from 0.5 to 3, the KOH-activated carbons exhibited BET surface areas ranging from 731 to 1687 m2/g with a similar micropore content (80–92%). The carbons activated by steam at 830 °C for 2 h had a BET surface area of 821 m2/g with the micropore content of 42%. The micropore/total pore volume ratio (Vmicro/Vpore) and average pore size (Dpore) were independent of the KOH/char ratio, revealing that KOH activation is a powerful method in developing and controlling the number of micropores with a very similar pore size distribution. The adsorption equilibria and kinetics of methylene blue, basic brown 1, acid blue 74, 2,4-dichlorophenol, 4-chlorophenol, and phenol from water on all activated carbons at 30 °C were investigated to demonstrate the fact that adsorption of organics is not only dependent upon the BET surface area but is also determined by the relative size between pores and molecules. The adsorption isotherms were subjected to the model fitting according to Langmuir and Freudlich equations. By comparing the projected area of adsorbates, the surface coverage of phenols is about 3.6 times of that of dyes (based on unit gram of activated carbon). The Elovich equation was found to suitably describe the adsorption process of all KOH-activated carbons while the adsorption behavior on the steam-activated carbon was reasonably fitted with the intraparticle diffusion model.  相似文献   

18.
以典型煤基活性炭为载体、椰壳活性炭为对比,采用溶胶-凝胶法制备了活性炭负载的TiO2光催化剂(TiO2/AC),应用X射线衍射、扫描电镜、紫外-可见漫反射光谱和低温N2吸附等对复合光催化剂的晶相组成、表面形貌、孔结构等进行了表征,选取苯酚为模型化合物考察了复合光催化剂的光催化降解能力,并研究了活性炭种类及颗粒形貌对复合光催化剂活性的影响。结果表明,m(TiO2):m(AC)相同的条件下,TiO2在煤基活性炭上的负载率小于椰壳活性炭;其中,比表面积适中,大、中孔比例高的褐煤基活性炭更适合于作为光催化剂TiO2的载体;煤基复合光催化剂对于苯酚光催化降解效果优于椰壳基复合催化剂,对苯酚的降解效率优于等量的P25,达80%以上。  相似文献   

19.
An-Hui Lu  Jing-Tang Zheng 《Carbon》2002,40(8):1353-1361
Benzene pyrolysis was successfully introduced to modify the pore size distributions (PSD) of polyacrylonitrile based activated carbon fibers (PAN-ACF) into a sharp distribution, at the presence of nickel catalyst. The microstructures of samples were studied by means of nitrogen adsorption, XRD, and SEM. The nitrogen isotherms were analyzed in detail using the routine BET method, αs plot, DR equation, Horvath-Kawazoe (HK) equation, and regularized density functional theory (DFT), by which the surface area, micropore volume, and PSD were obtained. The results showed that the pore size of PAN-ACF can be effectively narrowed by catalytic benzene deposition and the PSD showed a unimodal nature, exhibiting potential behavior as a molecular sieve. A fraction residue of catalyst located in the ultramicropores can be washed by acid, resulting in increased BET surface area and micropore volume, which can also be confirmed by XRD and SEM measurements.  相似文献   

20.
Yanping Guo  Tanju Karanfil 《Carbon》2008,46(14):1885-1891
The adsorption of three synthetic organic compounds (SOCs) (i.e., phenanthrene, biphenyl, and 2-chlorobiphenyl), with similar physicochemical properties but different molecular conformations (i.e., planar and nonplanar), by an activated carbon and an activated carbon fiber was investigated. The physical characteristics of the carbons were obtained from low temperature nitrogen adsorption isotherms using BET, DR, and DFT models. Their surface chemistry was characterized by water vapor adsorption, pH of the point of zero charge, acid/base uptakes, and elemental analysis. The results indicated that adsorbent pore structure characteristics and adsorbate molecular conformation are important in the adsorption of SOCs by porous carbonaceous adsorbents. To predict the adsorption of SOCs by activated carbons, accurate characterization of pore shape and size distribution in primary micropores is important. The results indicated that adsorbate molecules can access and fill more efficiently the slit-shape pores than ellipsoidal pores, whereas the ellipsoidal pores create higher adsorption potential than slit-shape pores. Both molecular conformation and dimensions of adsorbate affect the adsorption. Planar molecules appear to access and pack in slit-shape pores more efficiently as compared to nonplanar molecules. Nonplanar molecular conformation weakens the interactions between adsorbate molecules and carbon surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号