首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silica nanoparticles were slip cast into porous stainless steel supports, which were then coated with polyfurfuryl alcohol and pyrolyzed to make nanoporous carbon membranes. The single gas permeances of the membranes formed on modified stainless steel supports were found to be between two and three orders of magnitude larger than the permeances of nanoporous carbon membranes (<10−11 mol m−2 s−1 Pa−1) synthesized on unmodified supports. Importantly, these high permeances (10−8-10−9 mol m−2 s−1 Pa−1) were achieved within the same range of O2/N2 selectivities (3-5) that we have observed for single gases permeating at much lower fluxes through the nanoporous carbon membranes on unmodified supports. The nanoporous carbon membranes also were formed by combining the silica nanoparticles with polyfurfuryl alcohol resin and applying the mixture directly onto an unmodified support. This simpler process was as effective in producing selective-high permeance membranes. In both cases the significant increase in permeance without loss of selectivity is attributed to the silica nanoparticles filling the macropores of the stainless steel supports, thereby leading to the formation of very thin but selective carbon layers.  相似文献   

2.
Electrochemical deposition of polyaniline (PANI) is carried out on a porous carbon substrate for supercapacitor studies. The effect of substrate is studied by comparing the results obtained using platinum, stainless steel and porous carbon substrates. PANI deposited at 100 mV s−1 sweep rate by potentiodynamic technique on porous carbon substrate is found to possess superior capacitance properties. Experimental variables, namely, concentrations of aniline monomer and H2SO4 supporting electrolyte are varied and arrived at the optimum concentrations to obtain a maximum capacitance of PANI. Low concentrations of both aniline and H2SO4, which produce PANI at low rates, are desirable. The PANI deposits prepared under these conditions possess network morphology of nanofibrils. Capacitance values as high as 1600 F g−1 are obtained and PANI coated carbon electrodes facilitate charge-discharge current densities as high as 45 mA cm−2 (19.8 A g−1). Electrodes are found to be fairly stable over a long cycle-life, although there is some capacitance loss during the initial stages of cycling.  相似文献   

3.
The corrosion inhibition characteristics of non-ionic surfactants of the TRITON-X series, known as TRITON-X-100 and TRITON-X-405, on stainless steel (SS) type X4Cr13 in sulphuric acid were investigated by potentiodynamic polarisation measurements. It was found that these surfactants act as good inhibitors of the corrosion of stainless steel in 2 mol L−1 H2SO4 solution, but the inhibition efficiency strongly depends on the electrode potential. The polarisation data showed that the non-ionic surfactants used in this study acted as mixed-type inhibitors and adsorb on the stainless steel surface, in agreement with the Flory-Huggins adsorption isotherm. Calculated ΔGads values are −57.79 kJ mol−1 for TRITON-X-100, and −87.5 kJ mol−1 for TRITON-X-405. From the molecular structure it can be supposed that these surfactants adsorb on the metal surface through two lone pairs of electrons on the oxygen atoms of the hydrophilic head group, suggesting a chemisorption mechanism.  相似文献   

4.
S. Pacheco Benito 《Carbon》2010,48(10):2862-538
Carbon nanofibers (CNFs) were deposited on metal foils including nickel (Ni), iron (Fe), cobalt (Co), stainless steel (Fe:Ni; 70:11 wt.%) and mumetal (Ni:Fe; 77:14 wt.%) by the decomposition of C2H4 at 600 °C. The effect of pretreatment and the addition of H2 on the rate of carbon formation, as well the morphology and attachment of the resulting carbon layer were explored. Ni and mumetal show higher carbon deposition rates than the other metals, with stainless steel and Fe the least active. Pretreatment including an oxidation step normally leads to higher deposition rates, especially for Ni and mumetal. Enhanced formation of small Ni particles by in situ reduction of NiO, compared to formation using a Ni carbide, is probably responsible for higher carbon deposition rates after oxidation pretreatment. The addition of H2 during the CNF growth leads to higher carbon deposition rates, especially for oxidized Ni and mumetal, thus enhancing the effect of the reduction of NiO. The diameters of CNFs grown on metal alloys are generally larger compared to those grown on pure metals. Homogenously deposited and well-attached layers of nanotubes are formed when the carbon deposition rate is as low as 0.1-1 mg cm−2 h−1, as mainly occurs on stainless steel.  相似文献   

5.
The sol–gel method was applied to the fabrication of amorphous silica membranes for use in hydrogen separation at high temperatures. The effects of fabrication temperature on the hydrogen permeation properties and the hydrothermal stability of amorphous silica membranes were evaluated. A thin continuous silica separation layer (thickness = <300 nm) was successfully formed on the top of a deposited colloidal silica layer in a porous glass support. After heat treatment at 800°C for an amorphous silica membrane fabricated at 550°C, however, it was quite difficult to distinguish the active separation layer from the deposited colloidal silica layer in a porous glass support, due to the adhesion of colloidal silica caused by sintering at high temperatures. The amorphous silica membranes fabricated at 700°C were relatively stable under steam atmosphere (500°C, steam = 70 kPa), and showed steady He and H2 permeance values of 4.0 × 10?7 and 1.0 × 10?7 mol·m?2·s?1·Pa?1 with H2/CH4 and H2/H2O permeance ratios of ~110 and 22, respectively. The permeance ratios of H2/H2O for membranes fired at 700°C increased drastically over the range of He/H2 permeance ratios by factors of ~3–4, and showed a value of ~30, which was higher than those fired at 500°C. Less permeation of water vapor through amorphous silica membranes fabricated at high temperatures can be ascribed to the dense amorphous silica structure caused by the condensation reaction of silanol groups.  相似文献   

6.
Asymmetric gas separation membranes were prepared by the dry-casting technique from PEEKWC, a modified amorphous glassy poly(ether ether ketone). The phase inversion process and membrane performance were correlated to the properties of the polymer and the casting solution (molar mass, polymer concentration, solution rheology and thermodynamics). It was found that a broad molar mass distribution of the polymer in the casting solution is most favourable for the formation of a highly selective membrane with a dense skin and a porous sub-layer. Thus, membranes with an effective skin thickness of less than 1 μm were obtained, exhibiting a maximum O2/N2 selectivity of 7.2 and a CO2/CH4 selectivity of 39, both significantly higher than in a corresponding thick dense PEEKWC membrane and also comparable to or higher than that of the most commonly used polymers for gas separation membranes. The CO2 and O2 permeance were up to 9.5×10−3 and 1.8×10−3 m3/(m2 h bar) (3.5 and 0.67 GPU), respectively.  相似文献   

7.
Hydrophilic fumed silica (SiO2)/polyacrylonitrile (PAN) composite electrolyte membranes were prepared by electrospinning composite solutions of SiO2 and PAN in N,N-dimethylformamide (DMF). Among electrospinning solutions with various SiO2 contents, the 12 wt% SiO2 in PAN solution has highest zeta potential (−40.82 mV), and exhibits the best dispersibility of SiO2 particles. The resultant 12 wt% SiO2/PAN nanofiber membrane has the smallest average fiber diameter, highest porosity, and largest specific surface area. In addition, this membrane has a three-dimensional network structure, which is fully interconnected with combined mesopores and macropores because of a good SiO2 dispersion. Composite electrolyte membranes were prepared by soaking these porous nanofiber membranes in 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1 vol%). It is found that 12 wt% SiO2/PAN electrolyte membrane has the highest conductivity (1.1 × 10−2 S cm−1) due to the large liquid electrolyte uptake (about 490%). In addition, the electrochemical performance of composite electrolyte membranes is also improved after the introduction of SiO2. For initial cycle, 12 wt% SiO2/PAN composite electrolyte membrane delivers the discharge capacity of 139 mAh g−1 as 98% of theoretical value, and still retains a high value of 127 mAh g−1 as 89% at 150th cycle, which is significantly higher that of pure PAN nanofiber-based electrolyte membranes.  相似文献   

8.
New microfiltration membranes from Tunisian natural materials are obtained using ceramic method. Paste from Tunisian silty marls refereed (M11) is extruded to elaborate a porous tubular configuration used as supports. The support heated at 1190 °C, shows an average pore diameters and porosity of about 9.2 μm and 49%, respectively. The properties in term of mechanical and corrosion resistances are very interesting. The elaboration of the layer based on Tunisian clay refereed (JM18) is performed by slip-casting method. The heating treatment at 900 °C leads to an average pore size of 0.18 μm. The water permeability determined of this membrane is 867 l h−1 m−2 bar−1. This membrane can be used for crossflow microfiltration. The application to the cuttlefish effluent clarification shows an important decrease of turbidity (inferior to 1 NTU) and chemical organic demand (COD) values (retention rate of about 65%). So, it seems that the prepared membrane is suitable for such wastewater treatment.  相似文献   

9.
Stainless steels (types 304 and 310S) were employed as bipolar plates for polymer electrolyte membrane fuel cells. For the cell operation, the decayed cell voltage was approximately 22 mV for the type 310S stainless steel after 1000 h operation, while that for type 304 stainless steel was about 46 mV. Corrosion products appeared on the cathode side bipolar plate for the type 304 stainless steel, while trace of corrosion was barely detected for type 310S stainless steel. In order to follow the pH on the bipolar plates during fuel cell operation, polarization tests were carried out for the type 310S stainless steel in synthetic solutions (0.05 M SO42− (pH 1.2-5.5) + 2 ppm F) as a function of pH (1.2-5.5) at 353 K. We also examined the contact resistance between the stainless steel and carbon diffusion layer before and after polarization. X-ray photoelectron spectroscopic (XPS) analyses were carried out for comparison of the surface states of the steels after the polarization tests and cell operation. In the synthetic solutions with lower pHs (≤3.3), the films were thinner and were mainly composed by enriched with chromium oxide. Whereas, they mainly consisted of relatively thick iron oxide when the solution pH was higher (≥4.3). XPS analyses for the bipolar plate of type 310S stainless steel on cathode side after cell operation demonstrated pH gradient on the plate, that is, the thicker iron-rich surfaces presented relatively higher pH from the gas inlet to center area, and the thinner chromium-rich surface appeared with lower pH around the gas outlet.  相似文献   

10.
Numerous biocorrosion studies have stated that biofilms formed in aerobic seawater induce an efficient catalysis of the oxygen reduction on stainless steels. This property was implemented here for the first time in a marine microbial fuel cell (MFC). A prototype was designed with a stainless steel anode embedded in marine sediments coupled to a stainless steel cathode in the overlying seawater. Recording current/potential curves during the progress of the experiment confirmed that the cathode progressively acquired effective catalytic properties. The maximal power density produced of 4 mW m−2 was lower than those reported previously with marine MFC using graphite electrodes. Decoupling anode and cathode showed that the cathode suffered practical problems related to implementation in the sea, which may found easy technical solutions. A laboratory fuel cell based on the same principle demonstrated that the biofilm-covered stainless steel cathode was able to supply current density up to 140 mA m−2 at +0.05 V versus Ag/AgCl. The power density of 23 mW m−2 was in this case limited by the anode. These first tests presented the biofilm-covered stainless steel cathodes as very promising candidates to be implemented in marine MFC. The suitability of stainless steel as anode has to be further investigated.  相似文献   

11.
A simple and easy sol-gel approach has been developed to directly synthesize in situ three-dimensionally interconnected uniform ordered bimodal porous silica (BPS) incorporating both the macroporosity and mesoporosity in the lattice without extra synthesis process performed in previous work. Multimodal porous carbon (MPC) was fabricated through the inverse replication of the BPS. The unique structural characteristics such as well-developed 3-D interconnected ordered macropore framework with open mesopores embedded in the macropore walls, large surface area (1120 m2 g−1) and mesopore volume (1.95 cm3 g−1) make MPC very attractive as an anode catalyst support in polymer exchange membrane fuel cell. The MPC-supported Pt-Ru alloy catalyst has demonstrated much higher power density toward hydrogen oxidation than the commercial carbon black Vulcan XC-72-supported ones.  相似文献   

12.
Highly conductive and hydration retentive organic-inorganic hybrid proton exchange membranes for direct methanol fuel cells were synthesized by in situ sol-gel generation of mesoporous silica (mSiO2) in sulfonated polyimide (SPI) via self-assembly route of organic surfactant templates for the tuning of the architecture of silica. The microstructure and properties of the resulting hybrid membranes were extensively characterized. The mesopores of about 3 nm in silica dispersion phase were formed in the SPI matrix. The existence of the mesoporous structure of silica improved the thermal stability, water-uptake and proton conductivity as well as methanol resistance of the hybrid membranes. The hybrid membrane with 30 wt.% mSiO2 exhibited the water-uptake of 44.8% at 25 °C, and proton conductivity of 0.214 S cm−1 at 80 °C at RH = 100%, while pure SPI exhibited the values of 40.6% and 0.179 S cm−1 in the same test conditions, respectively. The results suggested that the highly hydrophilic character of Si-OH groups and the large surface area of mSiO2 should contribute to the improvement of the water-uptake, meanwhile the mesoporous channels may supply the continuous proton conductive pathway in the hybrid membranes.  相似文献   

13.
A new graded-porosity FeAl alloy can be fabricated through Fe and Al elemental reactive synthesis. FeAl alloy with large connecting open pores and permeability were used as porous supports. The coating was obtained by spraying slurries consisting of mixtures of Fe powder and Al powder with 3-5 μm diameter onto porous FeAl support and then sintered at 1100 °C. The performances of the coating were compared in terms of thickness, pore diameter and permeability. With an increase in the coating thickness up to 200 μm, the changes of maximum pore size decreased from 23.6 μm to 5.9 μm and the permeability decreased from 184.2 m3 m− 2 kPa− 1 h− 1 to 76.2 m3 m− 2 kPa− 1 h− 1, respectively, for a sintering temperature equal to 1100 °C. The composite membranes have potential application for excellent filters in severe environments.  相似文献   

14.
Stainless steel and graphite electrodes were individually addressed and polarized at −0.60 V vs. Ag/AgCl in reactors filled with a growth medium that contained 25 mM fumarate as the electron acceptor and no electron donor, in order to force the microbial cells to use the electrode as electron source. When the reactor was inoculated with Geobacter sulfurreducens, the current increased and stabilized at average values around 0.75 A m−2 for graphite and 20.5 A m−2 for stainless steel. Cyclic voltammetry performed at the end of the experiment indicated that the reduction started at around −0.30 V vs. Ag/AgCl on stainless steel. Removing the biofilm formed on the electrode surface made the current totally disappear, confirming that the G.sulfurreducens biofilm was fully responsible for the electrocatalysis of fumarate reduction. Similar current densities were recorded when the electrodes were polarized after being kept in open circuit for several days. The reasons for the bacteria presence and survival on non-connected stainless steel coupons were discussed. Chronoamperometry experiments performed at different potential values suggested that the biofilm-driven catalysis was controlled by electrochemical kinetics. The high current density obtained, quite close to the redox potential of the fumarate/succinate couple, presents stainless steel as a remarkable material to support biocathodes.  相似文献   

15.
Asymmetric TiO2 hybrid photocatalytic ceramic membranes with porosity gradient have been fabricated via acid-catalyzed sol–gel method. Different structure directing agents (SDAs) i.e. Pluronic P-123, Triton X-100, Tween 20 and Tween 80 were incorporated in the preparation of TiO2 sol to obtain a porous multilayered TiO2 coated on the alumina ceramic support. Six different SDA-modified membrane specimens were fabricated. Four of which were coated with the TiO2 sols prepared using only one type of SDA. The remaining two specimens were fabricated via multilayer coating of different TiO2 sols prepared using different types of SDAs. Physico-chemical and morphological properties of different TiO2 layers were thoroughly investigated. The membrane M1 which had the most porous TiO2 sub-layers showed a high pure water permeability of 155 L m−2 h−1 bar−1. The membrane showed a relatively high Rhodamine B (RhB) removal of 2997 mg m−2 over 8 h treatment duration in the batch photoreactor, second only to the Pluronic-based TiO2 membrane (specific RhB removal of 3050 mg m−2). All membrane specimens exhibited good performances while operated in the flow-through photocatalytic membrane reactor. Over 91% of RhB removal capability was retained after 4 treatment cycles. All membranes also showed self-cleaning property by retaining >90% of initial flux after 4 treatment cycles. The flexibility of optimizing membrane performances by fine-tuning the porosity gradient configuration of the photocatalytic layer has also been demonstrated.  相似文献   

16.
《分离科学与技术》2012,47(12):1698-1708
Hybrid organic-inorganic H2-selective membranes consisting of single-layer or dual-layers of silica incorporating aromatic groups are deposited on a porous alumina support by chemical vapor deposition (CVD) in an inert atmosphere at high temperature. The single-layer silica membranes, which are made by the simultaneous decomposition of phenyltriethoxysilane (PTES) and tetraethylorthosilicate (TEOS), have good hydrothermal stability at high temperature and a high permeance for hydrogen in the order of 10?7 mol m?2 s?1 Pa?1 at 873 K, while preventing the passage of other larger molecular gases such as CH4 and CO2. The dual-layer silica membranes, which are obtained from the sequential decomposition of PTES and TEOS, exhibit an extremely high permeance for hydrogen of 3.6 × 10?6 mol m?2 s?1 Pa?1 at 873 K with a permselectivity of hydrogen over methane of 30. A normalized Knudsen based permeance method is applied to measure the pore size of PTES-derived silica membrane on the dual-layer silica membrane before treatment with TEOS. The method indicates that the pore size of the silica network is approximately in the range of 0.50–0.85 nm, which is higher than the characteristic length of pure silica membranes of 0.3 nm, accounting for the high permeance of the hybrid membranes.  相似文献   

17.
Structure and properties of PbO2-CeO2 anodes on stainless steel   总被引:1,自引:0,他引:1  
Yuehai Song 《Electrochimica acta》2007,52(24):7022-7027
The lack of ideal anodes with excellent activity and stability is one of the critical problems in electrochemical oxidation for organic wastewater treatment. It is reported in this paper that the PbO2-CeO2 films electrodeposited on stainless steel were used as catalytic electrodes for treating antibiotic wastewater. The PbO2-CeO2 films on stainless steel were proved to be high stability, good activity and relatively low cost. Because of these properties, the films are more attractive than any other electrocatalytic materials among conventional dimensionally stable anodes (DSA). Experimental results showed that the PbO2-CeO2 electrode has a service life of 1100 h in 3 M H2SO4 solution under a current density of 1 A cm−2 at 35 °C, compared with 300 h for PbO2 under the same conditions. The X-ray diffraction (XRD) patterns and SEM images indicated that the PbO2-CeO2 films on stainless steel have a dense structure and the preferred crystalline orientation on the substrate surface was changed. Color and chemical oxygen demand (COD) of antibiotics wastewater were studied by electrolysis by using these electrodes as anode and stainless steel as cathode. The results indicated that the anodes have excellent activity in antibiotic wastewater treatment. The PbO2-CeO2 electrodes have high chemical stability which contributed by the superstable nature of the electrode, dense microstructure, good conductivity and the improvement of bonding with the stainless steel during electrodeposition.  相似文献   

18.
Nafion stabilized inks of Vulcan XC-72 supported platinum (20 wt.%) nanoparticles (Pt/XC-72) were utilized to produce electrocatalytic films on glassy carbon. The catalysts were modified (activated) with phosphododecatungstic acid H3PW12O40 (PW12). Comparison was made to bare (PW12-free) electrocatalytic films. Electroreduction of dioxygen was studied at 25 °C in 0.5 mol dm−3 H2SO4 electrolyte using rotating disk voltammetry. For the same loading of platinum (≈95 μg cm−2) and for the approximately identical distribution of the catalyst, the reduction of oxygen at a glassy carbon electrode modified with the ink containing PW12 proceeded at ca. 30-60 mV more positive potential (depending on the PW12 content), and the system was characterized by a higher kinetic parameter (rate of heterogeneous electron transfer), when compared to the PW12-free electrocatalyst. Gas diffusion electrodes with Pt/XC-72 supported on carbon paper (Pt loading 1 mg cm−2) were also tested. Under the same experimental conditions, while the exchange current density and the total resistance contribution to polarization components, computed from the galvanostatic polarization curves were found to be clearly higher and lower, respectively, for the ink modified with PW12 relative to the unmodified system. The results demonstrate that addition of heteropolytungstatic acid (together with Nafion) enhances the electrocatalytic activity of platinum towards reduction of oxygen.  相似文献   

19.
N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyNTf2) was synthesized and characterized by CHNS elemental analysis, 1H and 13C NMR and IR spectroscopy. Europium tris[bis(trifluoromethylsulfonyl)imide] (Eu(NTf2)3) was prepared and studied for the electrochemical behavior of Eu(III) in BMPyNTf2 at glassy carbon and stainless steel working electrodes at 298-373 K by cyclic voltammetry, chronopotentiometry and chronoamperometry. Cyclic voltammogram of Eu(III) in BMPyNTf2 consisted of a quasi-reversible cathodic wave at −0.45 V (vs. Fc/Fc+, 373 K), which could be attributed to the reduction of Eu(III) to Eu(II) and an irreversible wave at −2.79 V (vs. Fc/Fc+) due to reduction of Eu(II) to Eu(0). The diffusion coefficient of Eu(III) in BMPyNTf2 was determined to be in the range of ∼10−7 cm2 s−1 by various electrochemical methods and the charge transfer rate constant was determined to be ∼10−5 cm s−1 by cyclic voltammetry.  相似文献   

20.
Passivation and its breakdown reactions have been studied on Mo-containing stainless steel specimens using different electrochemical techniques. Mo-containing stainless steel specimens were polarized in both naturally aerated NaCl and Na2SO4 solutions of different concentrations at 25 ± 0.2 °C between −1000 and 1500 mV versus saturated calomel electrode (SCE). The results of potentiodynamic polarization showed that icorr and ic increases with increasing either Cl or SO42− concentration indicating the decrease in passivity of the formed film. EIS measurements under open circuit conditions confirmed that the passivity of the film decrease with increase in either Cl or SO42− concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号