首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Carbon》2002,40(9):1507-1519
Synthetic activated carbons were prepared by H3PO4 activation of a chloromethylated and sulfonated copolymer of styrene and divinylbenzene, using an impregnation weight ratio of 0.75 and carbonization temperatures in the 400-1000 °C range. Other impregnation ratios (0.93 and 1.11) were also used at a carbonization temperature of 800 °C. The porous texture of the resulting carbons was characterized by N2 adsorption at −196 °C and CO2 adsorption at 0 °C. All carbons exhibited a multimodal pore size distribution with maxima in the micropore and meso/macropore regions. Maxima in pore volume were attained at 900 °C for micropores and at 500 and 900 °C for mesopores. The mesopore volume was less sensitive than the micropore volume to changes in the impregnation ratio. It is concluded that the porous texture is not a prime factor in determining the outstanding cation exchange capacities of these carbons.  相似文献   

2.
To reduce the cost of the formed coke briquettes which can be used as a substitute fuel to the metallurgical coke for the blast furnace from the coke breeze alternative binders and their blends were used. The high temperature behavior was investigated. The binders tested were: the nitrogen blown, air blown coal tar pitch and the blend of air blown coal tar pitch with the phenolic resins blends. The phenolic resin blends were prepared by mixing equal amount of resole and novalac. From the results, nitrogen blowing resulted in the weakest briquettes. The air blowing procedure should be preferred in place of nitrogen blowing for this purpose. When the air blown coal tar pitch was used alone as a binder, the briquettes must be cured at 200 °C for 2 h, then carbonized at a temperature above 670 °C. Since it requires higher temperature at carbonization stage, using air blown coal tar pitch alone as a binder was not economical. Therefore, the briquettes were prepared from the blended binder, containing air blown coal tar pitch and phenolic resins blend. The optimum amount of air blown coal tar pitch was found to be 50% w/w in the blended binder. Curing the briquettes at 200 °C for 2 h was found to be sufficient for producing strong briquettes with a tensile strength of 50.45 MN/m2. When these cured briquettes were carbonized at temperatures 470 °C, 670 °C and 950 °C, their strength were increasing continuously, reaching to 71.85 MN/m2 at the carbonization temperature of 950 °C. These briquettes can be used as a substitute for the metallurgical coke after curing; the process might not require un-economical high temperature carbonization stage.  相似文献   

3.
Carbon nutshells and hydrolytic lignin were used as starting materials for the preparation of microporous active carbons. Optimum parameters for cedar nutshell carbonization have been selected (temperature of carbonization 700-800 °C, rate of heating less than 3 °C/min) for the preparation of microporous carbons (average pore width 0.56 nm). The textural characteristics of microporous carbons made from nutshell are similar to those of a ‘Coconut’ carbon molecular sieve, but the latter has both a higher CO2 adsorption capacity and a higher coefficient of N2/O2 separation. The influence of carbonization and steam-activation parameters on the microtexture and molecular-sieve properties of granular carbons made from hydrolytic lignin was also investigated. A low rate of heating (less 3 °C/min) promotes the formation of micropores with average sizes around 0.56-0.58 nm at carbonization temperature 700 °C. At the same carbonization temperature the average sizes of micropores were 0.7-0.78 nm at rates of heating more than 3 °C/min. The activation of lignin-char with steam at 800 °C resulted in the formation of active carbons with more developed micropore volume (0.3-0.35 cm3 g−1) and with micropores of widths around 0.6-0.66 nm which are able to separate He from a He-CH4 mixture. The size of the micropores was varied as a function of burn off value.  相似文献   

4.
Activated carbon fiber cloth (ACFC) electrodes with high double layer capacitance and good rate capability were prepared from polyacrylonitrile (PAN) fabrics by optimizing the carbonization temperature prior to CO2 activation. The carbonization temperature has a marked effect on both the pore structure and the electrochemical performances of the ACFCs. Moderate carbonization at 600 °C results in higher specific surface area and larger pore size, and hence higher capacitance and better rate capability. The specific capacitance of the ACFCs in 6 mol L−1 KOH aqueous solution can be as high as 208 F g−1. It remains 129 F g−1 as the current density increases to 10 000 mA g−1.  相似文献   

5.
The influence of the activation temperature on the pore structure of granular activated carbons prepared from rockrose (Cistus ladaniferus L.), extracted previously into petroleum ether, is comparatively studied. The preparation was carried out by pyrolysis of a char in nitrogen and its subsequent activation by carbon dioxide and steam (flow of water controlled to generate the same mol number per minute of water as well as carbon dioxide/nitrogen) at 700-950°C to 40% burn-off. The techniques applied to study the pore structure were: pycnometry (mercury, helium), adsorption (carbon dioxide, 298 K; nitrogen, 77 K), mercury porosimetry and scanning electron microscopy. The preparation by steam activation, especially at 700°C, yields activated carbons showing a total pore volume larger than those prepared by carbon dioxide activation. The pore structures present the greatest differences when the activations are carried out between 700 and 850°C and closer at higher temperatures. At high temperatures, the decrease of differences in pore development caused by carbon dioxide or steam is attributed to an external burn-off. The micropore structure of each activated carbon is mainly formed by wide micropores. At the lowest activation temperatures, especially at 700°C, steam develops the mesoporosity much more than carbon dioxide. At 950°C, a similar reduction of pore volume in the macropore range occurs.  相似文献   

6.
Two coal chars were gasified with carbon dioxide or steam using a Pressurized Drop Tube Furnace (PDTF) at high temperature and pressurized conditions to simulate the inside of an air-blown two-stage entrained flow coal gasifier. Chars were produced by rapid pyrolysis of pulverized coals using a DTF in a nitrogen gas flow at 1400°C. Gasification temperatures were from 1100 to 1500°C and pressures were from 0.2 to 2 MPa. As a result, the surface area of the gasified char increased rapidly with the progress of gasification up to about six times the size of initial surface area and peaked at about 40% of char gasification. These changes of surface area and reaction rate could be described with a random pore model and a gasification reaction rate equation was derived. Reaction order was 0.73 for gasification of the coal char with carbon dioxide and 0.86 for that with steam. Activation energy was 163 kJ/mol for gasification with carbon dioxide and 214 kJ/mol for that with steam. At high temperature as the reaction rate with carbon dioxide is about 0.03 s−1, the reaction rate of the coal char was controlled by pore diffusion, while that of another coal char was controlled by surface reaction where reaction order was 0.49 and activation energy was 261 kJ/mol.  相似文献   

7.
A series of polyacrylonitrile-based hollow carbon fibres (PAN-HCFs) were prepared by carbonizing polyacrylonitrile (PAN) hollow cured fibres at temperature ranging from 550 to 950 °C for 1 h in nitrogen. The effects of carbonization temperature on the structure, elemental compositions, surface electrical conductivity, electromagnetic parameters and reflectivity of PAN-HCFs were investigated. Results indicate that the obtained PAN-HCFs have not been graphitized and the C content and surface electrical conductivity increases as the carbonization temperature increases. The reflectivity of composites of PAN-HCFs and resin is −7.50 dB at 6.06 GHz and the band of the reflectivity under −5 dB is 6 GHz when the carbonization temperature is 750 °C.  相似文献   

8.
Phenol based novalac, resol and the blend of both resins were used as binders in briquette production from coke breeze. The effects of the amount of catalyst on the tensile strength of the cured briquette were studied. The results obtained have indicated that the highest tensile strength could not be attained unless the blend of novalac and resol was used as binder. The most suitable blend was the binder prepared from the hydrochloric acid catalyzed novalac of F/P = 0.5 and the N/P = 0.3 catalyzed resol of F/P = 2.0. When this blend was used as a binder the tensile strength of the cured briquettes did not drop even if they were carbonized at 470 °C and 570 °C. Their strengths at these carbonization temperatures were 67 MPa and 72 MPa respectively, and the rise in the temperature resulted in some increase in their strength. These results show the fact that as the formed coke briquettes descends from the top of the blast furnace, the rise in temperature will not deteriorate their strength; it will probably improve their properties. Therefore, only curing at 200 °C for 2 h will be sufficient for the briquettes to be used as substitute for metallurgical coke in the blast furnace.  相似文献   

9.
Graphite foam was obtained after carbonization and graphitization of a pitch foam formed by the pyrolysis of coal tar based mesophase pitch mixed with graphite particles in a high pressure and temperature chamber. The graphite foam possessed high mechanical strength and exceptional thermal conductivity after adding the graphite particles. Experimental results showed that the thermal conductivity of modified graphite foam reached 110 W/m K, and its compressive strength increased from 3.7 MPa to 12.5 MPa with the addition of 5 wt% graphite particles. Through the microscopic observation, it was also found that fewer micro-cracks were formed in the cell wall of the modified foam as compared with pure graphite foam. The graphitization degree of modified foam reached 84.9% and the ligament of graphite foam exhibited high alignment after carbonization at 1200 °C for 3 h and graphitization at 3000 °C for 10 min.  相似文献   

10.
Carbon fibers were prepared from silk fibers after an iodine treatment and the carbon yield, fiber morphology, structure and mechanical properties were investigated. A single or multi-step carbonization process was used for the preparation. In the single step process, silk fibroin (SF) fibers were heated from 25 to 800 °C with a heating rate of 5 °C min−1 under Ar atmosphere. However, the carbon fiber obtained was partially melted and was too fragile to handle. For better performance, SF fibers were treated with iodine vapor at 100 °C for 12 h and untreated and iodinated SF fibers were heated from 25 to 800 °C by a multi-step carbonization process, which was defined based on the optimum thermal degradation rate of silk. In this multi-step process, the carbon fibers obtained from iodinated SF were structurally intact and stable in appearance, and the carbon yield achieved was ca. 36 wt.%, much higher than the value for untreated SF. X-ray diffraction, Raman spectroscopy and transmission electron microscopic observation revealed that the obtained carbon fibers from both untreated and iodinated SFs had a basically amorphous structure. The strength of carbon fibers prepared from iodinated SF using the multi-step carbonization was considerably increased compared to that of untreated SF. According to viscoelastic measurement, by heating above 280 °C the iodine introduced intermolecular cross-linking of the SF, and its melt flow was inhibited which produced a higher yield and better performance of the carbon fiber.  相似文献   

11.
Geopolymerisation of mechanically activated fly ash was studied at ambient (27 °C) and elevated (60 °C) temperatures by isothermal conduction calorimeter. Under both the conditions, mechanical activation enhanced the rate and decreased time of reaction. It was interesting to observe that in the samples milled for 45 min (median size ∼5 μm), a broad peak corresponding to geopolymerisation initiated at 27 °C after 32 h. The rate maxima at 60 °C, a measure of fly ash reactivity, showed a non-linear dependence on particle size and increased rapidly when the median size was reduced to less than 5-7 μm. Improvement in strength properties is correlated with median particle size, and reactivity of fly ash. The characterisation of the geopolymer samples by SEM-EDS, XRD and FTIR revealed that mechanical activation leads to microstructure and structural variations which can be invoked to explain the variation in the properties.  相似文献   

12.
S.C. Ho 《Carbon》2005,43(3):491-502
The effects of carbonization on the mechanical and tribological behavior of a copper/phenolic resin-based semi-metallic friction material were investigated. The results show that a lower carbonization rate leads to a material having higher compressive strength and hardness, as well as fewer cracks. A lower carbonization temperature results in a material with a weak XPS signal of the C-OH bond, while a higher carbonization temperature results in low C-H intensity and increased C-C intensity at the expense of C-H and CO/C-O groups. The material heat-treated to 400 °C has the highest compressive strength and hardness values. Heat-treating to higher temperature causes both values to decline. Both friction coefficient and wear are increased with increasing carbonization temperature. The material carbonized to 600 °C exhibits an optimum tribological performance. The worn surface of samples without heat treatment or heat-treated to lower temperatures is covered with a smooth but loosely-bonded layer of wear debris. Only a small amount of counter-face material is transferred to the sample surface. The worn surface of samples treated at higher temperatures is covered with rough sliding tracks. A significant amount of counter-face material is transferred onto the sample surface during the sliding. Carbonized samples demonstrate far better high-temperature heat/oxidation resistance than do non-carbonized samples.  相似文献   

13.
Biodiesel production via transesterification of mustard oil with methanol using solid oxide catalyst derived from waste shell of Turbonilla striatula was investigated. The shells were calcined at different temperatures for 4 h and catalyst characterizations were carried out by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Fourier transform infrared spectrometer (FT-IR), thermogravimetric analysis (TGA)/differential scanning calorimetry (DSC) and Brunauer-Emmett-Teller (BET) surface area measurements . Formation of solid oxide i.e. CaO was confirmed at calcination temperature of 800 °C. The effect of the molar ratio of methanol to oil, the reaction temperature, catalyst calcination temperature and catalyst amount used for transesterification were studied to optimize the reaction conditions. Biodiesel yield of 93.3% was achieved when transesterification was carried out at 65 ± 5 °C by employing 3.0 wt.% catalyst and 9:1 methanol to oil molar ratio. BET surface area indicated that the shells calcined in the temperature range of 700 °C-900 °C exhibited enhanced surface area and higher pore volume than the shells calcined at 600 °C. Reusability of the catalysts prepared in different temperatures was also investigated.  相似文献   

14.
Cocoa shell pellets were converted into activated carbon (CSAC) by carbonization at 800 °C followed by activation at 850 °C in CO2 flow until reaching burn off at approximately 48%. The CSAC was treated with hydrochloric acid (HCl) using response surface methodology (RSM), where the effect of soaking times (1, 2 and 4 h), temperatures (30, 50, 70 °C) and concentration of HCl (0.1, 1 and 2 M) were studied. CSAC treated with 1 M HCl at higher temperatures (>60 °C) yielded CSAC with low ash content (<10%). Acid-treatment process parameters, particularly the reaction temperature, determined the composition and types of functional groups existing in the CSAC. High concentrations of oxygen functional groups were detected in both untreated CSAC and CSAC treated at low acid concentration (1 M). High concentrations of nitrogen functional groups were detected only in CSAC treated at acid concentration (2 M).  相似文献   

15.
Alumina-ceramic membranes were prepared by gelcasting process using CTAB as a foaming agent. To increase the fineness, the starting alumina powder was milled for 1 h in a ball mill before the casting process. Particle size distribution and surface area measurements of the as-received and milled alumina powder were examined. The casted alumina membranes were sintered at 1500 °C. Sintering parameters in terms of bulk density (BD) and apparent porosity (AP) were determined by the Archimedes method. Pore size distribution of the sintered porous alumina membranes was measured using mercury porosimeter. Microstructure of sintered membranes was investigated by scanning electron microscope (SEM). Cold crushing strength (CCS) of the sintered specimens was also evaluated. The result revealed that the properties of porous ceramics such as porosity, average pore size, pore size distribution and cold crushing strength could be controlled by adjusting the preparation conditions e.g. solid loading, sintering temperature and foaming agent. The open porosity, cold crushing strength and average pore size of the alumina ceramics sintered at 1500 °C were around 58.35%, 18 MPa and178 nm, respectively.  相似文献   

16.
Mullite ceramics were fabricated at relatively low sintering temperatures (1500-1550 °C) from recycled flyash and bauxite with MgO addition as raw materials. The densification behavior was investigated as function of magnesia content and sintering temperature. The results of thermal analysis, bulk density and pore structure indicate that MgO addition effectively promoted sintering, especially above 1450 °C. Due to the presence of large interlocked elongated mullite crystals above 1450 °C, associated with enhanced densification, an improvement in mechanical strength was obtained for the samples containing magnesia. The addition of magnesia slightly decreases the LTEC at 1300 °C due to the formation of low-expansion α-cordierite, but slightly increases the LTEC above 1400 °C due to the formation of high expansion corundum and MgAl2O4 spinel.  相似文献   

17.
Preparation of activated carbon has been attempted using steam as the activating agent by microwave heating from Jatropha hull. The response surface methodology (RSM) technique is utilized to optimize the process conditions. The influences of the three major parameters, activation temperature, activation time and steam flow rate on the properties of activated carbon are investigated using analysis of variance (ANOVA), to identify the significant parameters. The optimum conditions for the preparation of activated carbon has been identified to be an activation temperature of 900 °C, activation time of 19 min and steam flow rate of 5 g/min. The optimum conditions resulted in an activated carbon with an iodine number of 988 mg/g and a yield of 16.56% respectively, while the BET surface area evaluated using nitrogen adsorption isotherm correspond to 1350 m2/g, with the pore volume of 1.07 cm3/g. The activated carbon is hetero porous with the micropore volume contributing to 40.8%.  相似文献   

18.
Fa-Ai Zhang  Dong-Keun Lee 《Polymer》2009,50(20):4768-9934
PMMA-mesoporous silica nanocomposites were prepared for the first time through in situ batch emulsion polymerization of methyl methacrylate in the presence of large pore MSU-F silica with a mesocellular foam structure (24.8 nm average cavity size) and subsequent compression molding of the polymer-silica nanoparticle mixtures. For composites containing 5.0 wt % silica, the onset decomposition temperature and the temperature at 10% weight loss for the nanocomposite increased 41 °C and 50 °C, respectively, in comparison to pure PMMA. The glass transition temperature of the nanocomposite increased 9.3 °C, as determined by differential scanning calorimetry. In addition, the storage modulus determined by dynamic mechanical analysis increased 17% and 80% at 50 °C and 100 °C, respectively. Substantial improvements in tensile strength (+50%) and modulus (+72%), were achieve at 10 wt % nanoparticle loading. Composites made by compression molding of physical mixtures of PMMA and MSU-F silica powders provide less improvement in thermal stability, glass transition temperature and mechanical properties in comparison to the composites made through in situ batch emulsion polymerization. Unlike previously reported composites made from nanoclays, the silica composites reported here show improvements in both thermal stability and mechanical reinforcement.  相似文献   

19.
The effect of oxidation pre-treatment of a phenolic resin fiber was examined from two aspects: one is to examine if the pre-treatment can be a means to increase the yield of carbon fiber and activated carbon fiber (ACF), and the other is to study the effect of the pre-treatment on the carbonization and activation behavior. A phenolic resin fiber was oxidized in air at 220 to 270 °C and it was subsequently carbonized at 900 °C and activated by steam at 900 °C. The oxidation was found to affect significantly the subsequent carbonization process in the way that the yield of the carbonized fiber increased with the severity of the oxidation. On the other hand, the oxidation was found not to affect the chemical and physical properties of the carbonized fiber. The ACF produced from the oxidized fiber had almost same pore structure as the ACF produced from the non-treated fiber when compared at a same activation level. The maximum yield of ACF produced from the oxidized fiber was 1.13 times larger than the yield of ACF produced from the non-treated fiber. Thus we could increase the production yield of ACF significantly without losing its high adsorption performance.  相似文献   

20.
The classical DR method and the Quenched Solid Density Functional Theory (QSDFT) approach have been used to analyse N2 at 77 K isotherms determined on activated carbons prepared by alkaline chemical activation of different lignins. The QSDFT pore size distributions are bimodal with a narrow peak below 1 nm and a broad peak from 1 to 2.5-3.5 nm. Deconvolution allows estimation of the volumes and widths of the narrow micropores. These are lower than estimated by the DR analysis as this does not separate micropore and non-micropore adsorption. On the basis of the QSDFT analysis, the optimum conditions for obtaining materials with a high volume of narrow micropores were activation temperatures of 550-650 °C, hydroxide/lignin ratio of 1 and dwell time at the maximum activation temperature of 30 min. KOH was preferable to NaOH as it requires lower temperatures and results in materials with higher narrow micropore volumes. The “best” material obtained, prepared with KOH at 550 °C, had mean micropore width of 0.7 nm and micropore volume of 0.37 cm3 g−1 which compares very favourably with molecular sieve carbons prepared from synthetic polymers. Furthermore, this material was obtained with an activation yield of 32.9%, which is quite high for alkaline chemical activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号