首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The polarization properties of iodine complex layer deposited by oxidation of poly(vinyl alcohol) (PVA) containing metal iodide were investigated. Heat-resistant polarizing films with high polarization efficiency were produced by oxidizing and stretching the PVA containing metal iodide. The results indicate that i) the polarization efficiency of a polarizing film prepared by oxidation of a PVA film containing 1 mmol or more of potassium iodide (KI)/g PVA at 0°C for 120 s in a 10 wt.-% aqueous solution of H2O2 and a degree of stretching of 400% is high, ii) the heat resistance of the polarizing film in this experiment is higher than that of a filter prepared from a commercial PVA film.  相似文献   

2.
Chitosan and poly(vinyl alcohol) blend fibers were prepared by spinning their solution through a viscose‐type spinneret at 25°C into a coagulating bath containing aqueous NaOH and ethanol. The influence of coagulation solution composition on the spinning performance was discussed, and the intermolecular interactions of blend fibers were studied by infrared analysis (IR), X‐ray diffraction (XRD), and scanning electron micrograph (SEM) and by measurements of mechanical properties and water‐retention properties. The results demonstrated that the water‐retention properties and mechanical properties of the blend fibers increase due to the presence of PVA in the chitosan substract, and the mechanical strength of the blends is also related to PVA content and the degree of deacetylation of chitosan. The best mechanical strength values of the blend fibers, 1.82 cN/d (dry state) and 0.81 cN/d (wet state), were obtained when PVA content was 20 wt % and the degree of deacetylation of chitosan was 90.2%. The strength of the blend fibers, especially wet tenacity could be improved further by crosslinking with glutaraldehyde. The water‐retention values (WRV) of the blend fibers were between 170 and 241%, obviously higher than pure chitosan fiber (120%). The structure analysis indicated that there are strong interaction and good miscibility between chitosan and poly(vinyl alcohol) molecular resulted from intermolecular hydrogen bonds. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2558–2565, 2001  相似文献   

3.
Poly(vinyl alcohol) (PVA) is a water-soluble polymer that has been studied intensively because of several interesting physical properties that are useful in technical applications, including biochemical and medical applications. In this article, we report the effects of the addition of gelatin on the optical, microstructural, thermal, and electrical properties of PVA. Pure and PVA/gelatin blend films were prepared with the solution-casting method. These films were further investigated with Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), ultraviolet–visible (UV–vis) spectroscopy, and dielectric measurements. The FTIR spectrum shows a strong chemical interaction between PVA and gelatin molecules with the formation of new peaks. These peaks are due to the presence of gelatin in the blend films. The DSC results indicate that the addition of gelatin to PVA changes the thermal behavior, such as the melting temperature of PVA, and this shows that the blends are compatible with each other. This also shows that the interaction of gelatin and PVA molecules changes the crystallite parameters and the degree of crystallinity, and this supports the XRD results. The UV–vis optical study also reflects the formation of the complex and its effect on the microstructure of the blend film. Moreover, the addition of gelatin also gives rise to changes in the electrical properties of PVA/gelatin blend films. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Hollow carbon fibers were fabricated from solid poly(vinyl alcohol) (PVA) fibers with the aid of an iodine pretreatment followed by stabilization. Iodination converted the chemical structure of PVA to polyene form due to dehydration reaction, and stabilization of heat treatment at 200 °C in air provided insolubilization of iodinated PVA fibers. These processes extremely enhanced the carbon yield and enabled to obtain intact carbon fiber. By selective iodination and subsequent stabilization within the fiber cross-section close to the fiber surface, hollow carbon fibers were made through the carbonization.  相似文献   

5.
The importance of antibacterial materials for biomedical applications is growing nowadays. The presented article deals with the characterization of structural, mechanical and thermal properties and of antibacterial polymeric films based on polyvinyl alcohol (PVA) and silver nitrate, which can find their applicability in wound dressing components and protective coating. The methods of transmission electron microscopy, UV–vis and XRD spectroscopy, optical microscopy, differential scanning calorimetry, stress–strain analysis, and agar diffusion test were used to characterize the polymer films prepared. The results showed strong antibacterial activity against Escherichia coli and Staphylococcus aureus already at the lowest addition level of silver nitrate. An improvement of mechanical properties (Young's modulus) was also noticed due to a modification of PVA with silver nitrate up to 1 wt. % of silver content. Furthermore, the results show a strong effect of the thermal history of the sample preparation on the degree of silver‐ion reduction and formation of nanoparticles. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
7.
In this article, the effect of the addition of graphene oxide (GO) and reduced graphene oxide (rGO) on the mechanical properties, thermal stability, and electrical conductivity of polyvinyl alcohol (PVA) has been investigated. Different weight percentages of nanofillers ranging from 0.5 to 5 wt% have been combined with PVA. The ultrasonic technique has been applied to disperse nanofillers in the PVA solution. The nanocomposite films have been prepared via solution casting technique and the dispersion of nanofillers into the PVA has been studied through optical microscopy. The microstructure, crystallization behavior, and interfacial interaction were characterized through X-ray diffraction and Fourier transform infrared spectroscopy. Differential scanning calorimetry (DSC) and thermogravimetric analysis have been applied to study the thermal properties of the prepared nanocomposites. The DSC results revealed that the crystallization temperature and melting temperature were enhanced in the presence of GO nanofiller. Besides, the tensile strength at break was improved along with the addition of GO; however, elongation at break for PVA/GO and PVA/rGO was diminished. Moreover, all specimens showed insulating behavior and the only sample was electrically conducting, which contain a high amount of rGO (5 wt%).  相似文献   

8.
The aim of this study was to characterize antimicrobial electrospun poly(vinyl alcohol) (PVA) nanofibers containing benzyl triethylammonium chloride (BTEAC) as an antimicrobial agent. The antimicrobial BTEAC-PVA nanofibers were prepared through electrospinning at the optimal conditions of 15 kV voltage and a 1.0 mL h 1 flow rate. Based on the minimum inhibitory concentration (MIC) test results against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli and Klebsiella pneumonia, BTEAC-PVA nanofibers containing 2.6% BTEAC were fabricated to test the antibacterial and antiviral activities. The average diameter of the BTEAC-PVA nanofibers increased from 175.7 to 464.7 nm with increasing BTEAC concentration from 0 to 2.6%. The antimicrobial activities of the BTEAC-PVA nanofibers were tested against bacteria. The antibacterial tests with 2.6% BTEAC-PVA nanofibers demonstrated that bacterial reduction in PVA nanofibers was similar to the control value, indicating that PVA had a minimal effect on bacteria death. For the BTEAC-PVA nanofibers, the bacterial reduction ratio increased with increasing contact time, demonstrating that BTEAC-PVA nanofibers successfully inhibited the growth of bacteria. In addition, the antiviral tests against viruses (bacteriophages MS2 and PhiX174) showed that the BTEAC-PVA nanofibers inactivated both MS2 and PhiX174.  相似文献   

9.
Gasification of microalgae feedstock generates mineral ash. In this work, raw ash is produced from lipid‐extracted algal biomass of the Nannochloropsis salina strain. Prior to using it as filler for composite fabrication with poly(vinyl alcohol), raw ash (RASH) is activated with NaOH and surface modified with (3‐aminopropyl)triethoxysilane. Surface modification of activated ash (PASH) significantly improves interfacial interaction between surface‐modified ash (GASH) and polymer matrix. Higher ultimate tensile strength of PVA/GASH composites is recorded, compared with PVA/RASH and PVA/PASH. Young's modulus of biocomposites appears to increase proportionally to loading of the fillers. Thermal properties of polymeric materials of PVA with these ashes are stable. This is the first report to demonstrate the utilization of microalgal ash, the leftover after completed gasification of algal biomass, as an efficient filler for production of value‐added polymeric materials. It is proposed that microalgal ash is capable of improving the economic feasibility of microalgae‐based biorefinery. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43599.  相似文献   

10.
Graphene oxide (GO) was well dispersed in poly(vinyl alcohol) (PVA) diluted aqueous solution, and then the mixture was electrospun into GO/PVA composite nanofibers. Electron microscopy and Raman spectroscopy on the as‐prepared and calcined samples confirm the uniform distribution of GO sheets in the nanofibers. The thermal and mechanical properties of the nanofibers vary considerably with different GO filler contents. The decomposition temperatures of the GO/PVA composite nanofiber dropped by 38–50°C compared with pure PVA. A very small loading of 0.02 wt % GO increases the tensile strength of the nanofibers by 42 times. A porous 3D structure was realized by postcalcining nanofibers in H2. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
The preparation of poly(vinyl alcohol) (PVA) fibers by multi-step drawing was examined. The high draw ratio was attained when the drawing just before melting point was repeated. The influences of the draw ratio on mechanical and thermal properties of the fibers were studied. We utilized the wide angle x-ray diffraction (WAXD) as a medium to observe the erystallinity and the orientation of PVA fibers to study their effects on the physical properties of the fibers. With various coagulation bath concentration, both the tenacity and Young's modulus of fibers would increase as the draw ratios increased, the elongation would decrease at the same time. The tenacity was able to reach 41.0 cN/tex with the Young's modulus being 856.2 cN/tex; also, as the draw ratios increased, both crystallinity and orientation would increase. The crystallinity was about 67.2 % and the orientation was about 86.4%.  相似文献   

12.
A method using a combination of ball milling, acid hydrolysis, and ultrasound was developed to obtain a high yield of cellulose nanofibers from flax fibers and microcrystalline cellulose (MCC). Poly(vinyl alcohol) (PVA) nanocomposites were prepared with these additives by a solution‐casting technique. The cellulose nanofibers and nanocomposite films that were produced were characterized with Fourier transform infrared spectrometry, X‐ray diffraction, thermogravimetric analysis, scanning electron microscopy, and transmission electron microscopy. Nanofibers derived from MCC were on average approximately 8 nm in diameter and 111 nm in length. The diameter of the cellulose nanofibers produced from flax fibers was approximately 9 nm, and the length was 141 nm. A significant enhancement of the thermal and mechanical properties was achieved with a small addition of cellulose nanofibers to the polymer matrix. Interestingly, the flax nanofibers had the same reinforcing effects as MCC nanofibers in the matrix. Dynamic mechanical analysis results indicated that the use of cellulose nanofibers (acid hydrolysis) induced a mechanical percolation phenomenon leading to outstanding and unusual mechanical properties through the formation of a rigid filler network in the PVA matrix. X‐ray diffraction showed that there was no significant change in the crystallinity of the PVA matrix with the incorporation of cellulose nanofibers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Blends of plasticized casein (CA) and poly(vinyl alcohol) (PVA) at various ratios were prepared using the solution‐casting method. The prepared blend solutions were cast onto polystyrene petri plates and bend films were obtained. The characterization of films was performed using Fourier transform infrared spectroscopy, tensile testing, thermogravimetric analysis, contact angle measurements and water vapour permeability. According to spectroscopic analysis, there were interactions between the CA and PVA molecules. The tensile test results showed that the tensile strength of CA increased with increasing PVA content. The flexibility of plasticized CA film increased with the incorporation of PVA. The thermal stability and water vapour barrier properties of plasticized CA improved on blending with PVA. As a result, it was seen that blend films were successfully produced using plasticized CA and PVA with potential for use in biodegradable packaging applications. © 2019 Society of Chemical Industry  相似文献   

14.
Graphene (GE)‐based nanocomposites are emerging as a new class of materials that hold promise for many applications. In this article, we present a general approach for the preparation of GE/poly(vinyl alcohol) (PVA) nanocomposites. The basic strategy involved the preparation of graphite oxide from graphite, complete exfoliation of graphite oxide into graphene oxide sheets, followed by reduction to GE nanosheets, and finally, the preparation of the GE/PVA nanocomposites by a simple solution‐mixing method. The synthesized products were characterized by X‐ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetry, and differential scanning calorimetry analysis. The GE nanosheets were well dispersed in the PVA matrix, and the restacking of the GE sheets was effectively prevented. Because of the strong interfacial interaction between PVA and GE, which mainly resulted from the hydrogen‐bond interaction, together with the improvement in the PVA crystallinity, the mechanical properties and thermal stability of the nanocomposites were obviously improved. The tensile strength was increased from 23 MPa for PVA to 49.5 MPa for the nanocomposite with a 3.25 wt % GE loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
The structure and optical properties of the complex formed in the crystal phase of PVA that is caused by soaking at very high iodine concentration are investigated. In the resonance Raman spectra of lightly and heavily iodinated specimens, two Raman shifts appeared at 109 and 161 cm?1. The 109 cm?1 peak due to the I mode was much stronger than the 161 cm?1 peak in a heavily iodinated specimen, whereas the peak was comparable with the 161 cm?1 peak in a lightly iodinated specimen. The complex formed in the crystal phase is identified as the I mode complex. It has an averaged iodine–iodine distance of 3.2 Å, which is different from the 3.08 Å of the I mode complex formed in the amorphous phase. The effect of KI concentration in the soaking solution on the formation of the complex is also examined. The increased KI concentration in the soaking solutions at a fixed iodine concentration increases the amount of the complex formed in the crystal phase. The change in the hydrogen-bonding state in the crystal phase with the complex formation can be evidenced by IR and NMR. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
Here, a high breaking strength and high initial modulus fibers comprised of polyvinyl alcohol (PVA) and graphene oxide (GO) were fabricated via simple method of solution blending and wet-spinning. The structure and properties of these fibers were studied in details using two-dimensional X-ray diffractions, differential scanning calorimetry, one-dimensional X-ray diffractions, scanning electron microscopy, transmission electron microscopy, dynamic mechanical analysis and tensile test. Compared with pure PVA fiber, a 43 % improvement of breaking strength and an 81 % improvement of initial modulus were achieved by addition of 0.1 wt% of GO, and the results indicated that crystallization and orientation of GO/PVA composite fibers were both increased. GO could not only promote PVA chains ordered arrangement for increasing crystallization, but also act as a template for polymer amorphous orientation via the interactions between PVA and GO in the process of hot drawing and heat setting, which were responsible for the significant improvement in the mechanical properties of GO/PVA composite fibers.
Graphical abstract GO could not only promote PVA chains ordered arrangement for increasing crystallization, but also act as a template for PVA amorphous orientation in the process of hot drawing. The amorphous orientation degree and the crystallization degree of PVA fibers were increased by adding GO.
  相似文献   

17.
Synthetic adhesives containing 3,4‐dihydroxy‐L‐phenylalanine and its derivatives have strong adhesion strength and good biocompatibility, which make them prime candidates for adhesives or bioadhesives applications. In this study, a new photocurable poly (vinyl alcohol) (UV‐PVA) derivative was prepared and used as crosslinking agent to further improve adhesion strength of dopamine methacrylamide (DMA) system. The structure of UV‐PVA was confirmed, and the degree of acryloyl group substitution (DS) was easily varied from 10 to 40% by varying the molar ratio of acryloyl chloride to ? OH of PVA. The effects of ultraviolet light intensity, content of DMA and DS values of PVA on the photopolymerization kinetics were studied, and the effects of DS value on the adhesive strength, swelling performance and cell attachment were also investigated. It was found that adhesive containing UV‐PVA with 40% DS value yielded the highest adhesive strength, a relatively low swelling ratio and good biocompatibility. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
α-Chitin whisker-reinforced poly(vinyl alcohol) (PVA) nanocomposite films were prepared by solution-casting technique. The α-chitin whiskers were prepared by acid hydrolysis of α-chitin from shrimp shells. The as-prepared whiskers exhibited the length in the range of 150-800 nm and the width in the range of 5-70 nm, with the average length and width being about 417 and 33 nm, respectively. Thermal stability of the as-cast nanocomposite films was improved from those of the pure PVA film with increasing whisker content. The presence of the whiskers did not have any effect on the crystallinity of the PVA matrix. The tensile strength of α-chitin whisker-reinforced PVA films increased, at the expense of the percentage of elongation at break, from that of the pure PVA film with initial increase in the whisker content and leveled off when the whisker content was greater than or equal to 2.96 wt%. Both the addition of α-chitin whiskers and heat treatment helped improve water resistance, leading to decreased percentage degree of swelling, of the nanocomposite films.  相似文献   

19.
High-strength poly(vinyl alcohol) (PVA) fiber was obtained by the crosslinking wet-spinning technique, which is an improved technique of the conventional non-crosslinked type wet-spinning of PVA. High tensile strength as well as high Young's modulus was achieved by introduction of the borate ion-aided crosslinks during the coagulation process. The drawability of the as-spun fiber greatly depends on the fiber thickness. The thinner the fiber, the higher the drawability. Since thinner fiber is subject to a very high shear rate on extrusion, the crosslinks introduced are believed to maintain topological memory of the oriented chains, which have a low density of entanglements. This allows drawing the fiber to a higher draw ratio. The strength and Young's modulus of the resultant highly drawn PVA fiber were achieved to be 22 g/d (2.3 GPa) and 430 g/d (50 GPa), respectively. The mechanism of the spinning was discussed and the spinning condition was carefully examined in order to optimize the final mechanical properties of the PVA fibers.  相似文献   

20.
In this study, the effect of activator ZnO and heating time at 190°C on foaming, gelation, and dehydrochlorination of poly(vinyl chloride) (PVC) plastisol was investigated. For this purpose, a PVC plastisol was prepared by mixing PVC, dioctyl phthalate (DOP), azodicarbonamide (ADC), ZnO, and the heat stabilizers calcium stearate (CaSt2) and zinc stearate(ZnSt2). PVC plastisol films were heated for 3, 6, 12, and 24 min periods at 190°C to see the effect of heating time on the gelation and foaming processes of the PVC foam. The time of 12 min was determined to be optimum for the completion of gelation and foaming processes without thermal degradation of PVC. No foaming was observed under the same conditions for the samples without ZnO. ZnO had a significant catalytic effect on ADC decomposition, accelerating the foaming of the films. Average porosity measurement showed a consistent increase in porosity with heating time up to 76% and the average density decreased from 1.17 to 0.29 g/cm3 on foaming. Tensile tests showed that the tensile strength and tensile strain both increased considerably up to 0.98 MPa and 207%, respectively, with heating time and the elastic modulus was seen to gradually decrease from 4.7 to 0.7 MPa with heating time. Films without ZnO had higher tensile strength since there were no pores. PVC thermomat tests showed that ZnO lowered the stability time of plastigel film with azodicarbonamide. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号