首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This work presents the development of n-type and p-type gas-sensitive materials from NiOx doped TiO2 thin films prepared by ion-assisted electron-beam evaporation. TiO2 gas-sensing layers have been deposited over a wide range of NiOx content (0-10 wt.%). The material analysis by atomic force microscopy, X-ray photoemission spectroscopy, and X-ray diffraction suggests that NiOx doping does not significantly affect surface morphology and Ni element may be a substitutional dopant of the TiO2 host material. Electrical characterization shows that NiOx content as high as 10% wt. is needed to invert the n-type conductivity of TiO2 into p-type conductivity. There are notable gas-sensing response differences between n-type and p-type NiOx doped TiO2 thin film. The responses toward all tested reducing gases tend to increase with operating temperature for the n-type TiO2 films while the response decreases with temperature for p-type TiO2 film. In addition, the p-type NiOx doping results in the significant response enhancement toward tested reducing gases such as acetone and ethanol at low operating temperature of 300 °C.  相似文献   

2.
TiO2 film has been used in many industrial components such as laser filters, protection mirrors, chemical sensors, and optical catalysts. Therefore, the thermal properties of TiO2 thin films are important in, e.g., reducing the thermal conductivity of ceramic coatings in gas turbines and increasing the laser damage threshold of antireflection coatings. The thermal conductivity of four kinds of TiO2 thin films, prepared by dc magnetron sputtering, was measured using the 3 method in the temperature range from 80 K to room temperature. The results showed that the thermal conductivity of TiO2 thin films strongly depends on the thickness and the microstructure of the films. The films with smaller grain size and thinner thickness have smaller thermal conductivities.  相似文献   

3.
The conductivity of nanometer TiO2 thin films was presented in this paper. The dependence of the conductivity of TiO2 thin films on the thickness of the film and the substrate material were educed. The TiO2 films were deposited by reactive magnetron sputtering of a Ti targets in an Ar+O2 mixture in a conventional sputtering reactor. The thickness of the films deposited on Ti varied in the range from 15 to 225 nm. The resistivity of the films was measured at room temperature in the air. It was found that the conductivity of TiO2 thin films varies in the range from conductor, semiconductor to nonconductor. This was attributed to electrons transfer at the interface between the TiO2 and substrates, and the depth of electrons transfer was determined by the difference of work function.  相似文献   

4.
Tong Liang 《Thin solid films》2009,517(24):6689-6693
Pb0.5Sr0.5TiO3 thin films were prepared on Pt/TiO2/SiO2/Si and LaNiO3 (LNO)/Si substrates by using chemical solution deposition technique, and a layer-by-layer annealing method was used in an attempt to improve the dielectric properties of the thin films. The structure, dielectric, and ferroelectric properties of the thin films were investigated. Improved dielectric properties of the thin films were clearly confirmed: the dielectric constant and dielectric loss for the films on Pt/TiO2/SiO2/Si substrates annealed at 650 °C were 1064 and 0.027, respectively, at 1 kHz, with a dielectric tunability of more than 50%; similarly, the films prepared on LNO/Si substrates, showed a high dielectric constant of 1280 and a low dielectric loss of 0.023, at 1 kHz. P-E hysteresis loop measurements indicated that the remanent polarization and coercive field for the films on Pt/TiO2/SiO2/Si substrates annealed at 650 °C were 15.7 μC/cm2 and 51 kV/cm, respectively.  相似文献   

5.
Photocatalytic properties of porous TiO2/Ag thin films   总被引:1,自引:0,他引:1  
In this study, nanocrystalline TiO2/Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO2/Ag thin films were prepared after calcination at a temperature of 500 °C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO2 films. The as-prepared TiO2 and TiO2/Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation.When PS spheres of different sizes were introduced after calcination, the as-prepared TiO2 films exhibited different porous structures. XRD results showed that all TiO2/Ag films exhibited a major anatase phase. The photodegradation of porous TiO2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure.  相似文献   

6.
The effects of nitrogen ion bombardment on TiO2 films prepared by the Cat-CVD method have been studied to improve the optical and electrical properties of the material for use in Si thin film solar cells. The refractive index n and the dark conductivity of the TiO2 film increased with irradiation time. The refractive index n of the TiO2 film was changed from 2.1 to 2.4 and the electrical conductivity was improved from 3.4 × 10− 2 to 1.2 × 10− 1 S/cm by the irradiation. These results are due to the formation of Ti-N bonds and oxygen vacancies in the film.  相似文献   

7.
Transparent antireflective SiO2/TiO2 double layer thin films were prepared using a sol–gel method and deposited on glass substrate by spin coating technique. Thin films were characterized using XRD, FE-SEM, AFM, UV–Vis spectroscopy and water contact angle measurements. XRD analysis reveals that the existence of pure anatase phase TiO2 crystallites in the thin films. FE-SEM analysis confirms the homogeneous dispersion of TiO2 on SiO2 layer. Water contact angle on the thin films was measured by a contact angle analyzer under UV light irradiation. The photocatalytic performance of the TiO2 and SiO2/TiO2 thin films was studied by the degradation of methylene blue under UV irradiation. The effect of an intermediate SiO2 layer on the photocatalytic performance of TiO2 thin films was examined. SiO2/TiO2 double layer thin films showed enhanced photocatalytic activity towards methylene blue dye.  相似文献   

8.
Anatase titanium dioxide (TiO2) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO2 pellets as the source material. Highly transparent TiO2 thin films prepared at substrate temperatures from room temperature to 400 °C exhibited photocatalytic activity, regardless whether oxygen (O2) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO2 thin films prepared at 300 °C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO2 thin film with a resistivity of 2.6 × 10− 1 Ω cm was prepared at a substrate temperature of 400 °C without the introduction of O2 gas.  相似文献   

9.
《Materials Research Bulletin》2006,41(9):1596-1603
Anatase TiO2 thin films were successfully prepared on glass slide substrates via a sol–gel method from refluxed sol (RS) containing anatase TiO2 crystals at low temperature of 100 °C. The influences of various refluxing time on crystallinity, morphology and size of the RS sol and dried TiO2 films particles were discussed. These samples were characterized by infrared absorption spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission-scanning electron microscopy (FE-SEM) and UV–vis absorption spectroscopy (UV–vis). The photocatalytic activities of the TiO2 thin films were assessed by the degradation of methyl orange in aqueous solution. The results indicated that titania films thus obtained were transparent and their maximal light transmittance exceeded 80% under visible light region. The TiO2 thin films prepared from RS-6 sol showed the highest photocatalytic activity, when the calcination temperature is higher than 300 °C. The degradation of methyl orange of RS-6 thin films reached 99% after irradiated for 120 min, the results suggested that the TiO2 thin films prepared from RS sol exhibited high photoactivities.  相似文献   

10.
Abstract

Hydrophilic Cu–TiO2 thin films with a gradient in the Cu concentration were prepared on glass by layer-by-layer dip-coating from TiO2 precursors. The effects of the Cu doping on the structure and properties of TiO2 self-cleaning thin films are discussed. The Cu gradient markedly affects the hydrophilicity of the films, with the water contact angle significantly reduced compared with those of the pure or uniformly doped TiO2 thin films. This enhanced hydrophilicity is explained by the more efficient absorption of the solar light and by the reduced recombination of photoexcited electrons and holes in the TiO2 films containing a gradient of Cu dopants.  相似文献   

11.
Dense TiO2 (D-TiO2) thin films and porous TiO2 (P-TiO2) thin films were prepared by using a polymer-blended solution. The film porosity decreased gradually or disappeared with an increase in the polyethylene glycol (PEG) or TiO2 content of the solution. To modify their surface properties, the thin films were treated with atmospheric pressure (AP) plasma by using a reactive gas. The surface morphologies of the O2-plasma-treated TiO2 (O-TiO2) thin films were smooth and did not change significantly. The decolorization efficiency of the P-TiO2 thin films was found to be enhanced when compared to that of the D-TiO2 thin films. The enhancement was due to an increase in the specific surface area and the number of hydroxyl groups, and a decrease of Ti2O3 states.  相似文献   

12.
CdS quantum dot sensitized Gd-doped TiO2 nanocrystalline thin films have been prepared by chemical method. X-ray diffraction analysis reveals that TiO2 and Gd-doped TiO2 nanocrystalline thin films are of anatase phase. The absorption spectra revealed that the absorption edge of CdS quantum dot sensitized Gd-doped TiO2 thin films shifted towards longer wavelength side (red shift) when compared to that of CdS quantum dot sensitized TiO2 films. CdS quantum dots with a size of 5 nm have been deposited onto Gd-doped TiO2 film surface by successive ionic layer adsorption and reaction method and the assembly of CdS quantum dot with Gd-doped TiO2 has been used as photo-electrode in quantum dot sensitized solar cells. CdS quantum dot sensitized Gd-doped TiO2 based solar cell exhibited a power conversion efficiency of 1.18 %, which is higher than that of CdS quantum dot sensitized TiO2 (0.91 %).  相似文献   

13.
Titanium dioxide (TiO2) thin films were prepared on Galvanized Iron (GI) substrate by plasma-enhanced atomic layer deposition (PE-ALD) using tetrakis-dimethylamido titanium and O2 plasma to investigate the photocatalytic activities. The PE-ALD TiO2 thin films exhibited relatively high growth rate and the crystal structures of TiO2 thin films depended on the growth temperatures. TiO2 thin films deposited at 200 °C have amorphous phase, whereas those with anatase phase and bandgap energy about 3.2 eV were deposited at growth temperature of 250 °C and 300 °C. From contact angles measurement of water droplet, TiO2 thin films with anatase phase and Activ™ glass exhibited superhydrophilic surfaces after UV light exposure. And from photo-induced degradation test of organic solution, anatase TiO2 thin films and Activ™ glass decomposed organic solution under UV illumination. The anatase TiO2 thin film on GI substrate showed higher photocatalytic efficiency than Activ™ glass after 5 h UV light exposure. Thus, we suggest that the anatase phase in TiO2 thin film contributes to both superhydrophilicity and photocatalytic decomposition of 4-chlorophenol solution and anatase TiO2 thin films are suitable for self-cleaning applications.  相似文献   

14.
This study reports on the synthesis, characterisation and environmental applications of immobilised Titanium dioxide (TiO2) as photocatalyst. Nanostructured thin films have been prepared on glass substrates using a layer-by-layer dip-coating method. The crystalline phase and surface morphology of the thin films were investigated by X-ray diffraction (XRD) pattern and scanning electron microscopy (SEM), respectively. The XRD results show that the TiO2 thin films crystallise in anatase phase and we have found that the thin films consist of titanium dioxide nanocrystals. SEM shows that the nanoparticles are sintered together to form a compact structure and TiO2 particles coated with silver nanoclusters were observed. Ag-coated TiO2 films demonstrated photocatalysis performance when irradiated, and the Ag carrier further showed an electron-scavenging ability to mitigate electron–hole pair recombination, which can improve the photocatalytic efficiency. With the oxidisation and electron-scavenging ability of Ag and the photocatalysis ability of TiO2, Ag-coated TiO2 can decolour methyl orange (MO) more than bare TiO2. It is a new approach to form Ag-coated TiO2 nanoparticles with a simple system and non-toxic materials. The high photocatalytic effect of Ag-coated TiO2 nanoparticles on pollutant (MO) suggests that it may have a promising future for water and wastewater treatments.  相似文献   

15.
In this study, preparation of Nb-doped (0-20 mol% Nb) TiO2 dip-coated thin films on glazed porcelain substrates via sol-gel process has been investigated. The effects of Nb on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Surface topography and surface chemical state of thin films was examined by atomic force microscope and X-ray photoelectron spectroscopy. XRD and Raman study showed that the Nb doping inhibited the grain growth. The photo-catalytic activity of the film was tested on degradation of methylene blue. Best photo-catalytic activity of Nb-doped TiO2 thin films were measured in the TiO2-1 mol% Nb sample. The average optical transmittance of about 47% in the visible range and the band gap of films became wider with increasing Nb doping concentration. The Nb5+ dopant presented substitutional Ti4+ into TiO2 lattice.  相似文献   

16.
In this paper, the focus is on understanding the properties of nanocomposite hydroxyapatite (HAp)/titania (TiO2) thin films with respect to TiO2 concentration. HAp/TiO2 nanostructured composite thin films with different TiO2 concentrations were successfully fabricated by a simple sol–gel dip coating method. Highly stable HAp and TiO2 sols were prepared prior to the formation of nanocomposite thin films. The coatings were performed under controlled dipping and heat treatment processes. Phase pure HAp and TiO2 were well developed in the nanocomposite after the heat treatment and this was confirmed by XRD. The SEM and AFM analyses of HAp/TiO2 nanocomposite coatings show the variation in the morphology as a consequence different TiO2 concentration. This shows a reduction in the particle size to nanoscale due to the addition of TiO2. The mechanical strength of the coating also increased upon the addition of TiO2 as determined by nanoindentation. The composite thin films with 50 and 80 vol.% of TiO2 show good mechanical strength when compared to other concentrations of TiO2.  相似文献   

17.
In the present work the nanostructured carbon-doped TiO2 thin films with nanorod morphology were deposited on glass substrate by a combination of ultrasonic and chemical vapor deposition methods, and for the first time were applied for the photocatalytic degradation of paraoxon and parathion organophosphorus pesticides under visible light irradiation. X-ray Diffraction, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, and scanning electron microscopy techniques were used for characterization of the prepared thin films. Obtained results show that presence of carbon element and also special nanorod morphology of the thin films remarkably improve the optical properties of TiO2 in visible light region and results in the good visible light photocatalytic activity of the thin films for degradation of the pesticides. The photonic efficiencies of the prepared thin films were also examined based on the international ISO-10678:2010 standard protocol for photocatalytic degradation of methylene blue under UV light irradiation. The results show a maximum photonic efficiency of 0.0312% for the carbon-doped TiO2 thin film with 570 nm thickness, which compared to a reference standard TiO2 films indicates a 30% improvement in photonic efficiency.  相似文献   

18.
Composite solid polymeric electrolytes (CSPE) of PVA/PEG/LiClO4 and nanocomposite solid polymeric electrolytes (NSPE) of PVA/PEG/LiClO4/TiO2 films were prepared via solution casting technique using water as the solvent. TiO2 nano powder was prepared from the sulfate process and characterized by the XRD and SEM techniques. The structural interactions of the prepared films were studied by FTIR. Ionic conductivity of the prepared CSPE and NSPE films were measured using AC impedance method at a wide temperature range from 298.15 to 348.15 K in frequency range 50–100 MHz. The measured ionic conductivity results from Nyquist plot were compared with calculations results from equivalent circuit model. The temperature dependence of ionic conductivity of the prepared CSPE and NSPE films was expressed by Arrhenius model and the ionic conductivity activation energy was reported to be 0.86 and 0.89 eV respectively.  相似文献   

19.
《Thin solid films》2006,494(1-2):228-233
TiO2 materials possessing not only photocatalytic but also electrochromic properties have attracted many research and development interests. Though WO3 exhibits excellent electrochromic properties, the much higher cost and water-sensitivity of WO3 as compared with the TiO2 may restrict the practical application of WO3 materials. In the present study, the feasibility of preparing nanocrystalline porous TiO2/WO3 composite thin films was investigated.Precursors of sols TiO2 and/or WO3 and polystyrene microspheres were used to prepare nanocrystalline pure TiO2, WO3, and composite TiO2/WO3 thin films by spin coating. The spin-coated thin films were amorphous and, after heat treating at a temperature of 500 °C, nanocrystalline TiO2, TiO2/WO3, and WO3 thin films with or without pores were prepared successfully. The heat-treated thin films were colorless and coloration-bleaching phenomena can be observed during cyclic voltammetry tests. The heat-treated thin films exhibited good reversible electrochromic behavior while the porous TiO2/WO3 composite film exhibited improved electrochromic properties.  相似文献   

20.
《Materials Letters》2007,61(14-15):2908-2910
This work reports the preparation of acetic acid-modified TiO2 nanoparticles by sol–gel synthesis method. The nanoparticles can be incorporated directly into the polymer matrix to form transparent high refractive index nanocomposite thin films. The result shows that increasing the titania content in the hybrid nanocomposite thin films can significantly increase the refractive index. Hybrid nanocomposite thin film with refractive index value of 2.38 had been prepared. All prepared films also exhibit excellent optical transparency in the visible region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号