共查询到20条相似文献,搜索用时 78 毫秒
1.
双燃料发动机燃烧放热规律分析及燃烧特性研究 总被引:3,自引:2,他引:3
从热力学和内燃机燃烧的基本理论入手 ,推导了计算分析双燃料发动机缸内工质成分和热力学参数的计算关系式以及求解双燃料发动机燃烧放热规律的微分方程式 ,基于面向对象技术开发了双燃料发动机燃烧放热规律计算软件。研究结果表明 :用传统柴油机分析方法计算双燃料发动机的放热率峰值偏小 ,所计算的缸内工质平均温度偏高 ,新模型计算的结果与实际情况更为吻合。该分析软件可以适用于多种燃料发动机 ,是内燃机燃烧放热规律的通用计算软件。双燃料发动机燃烧特性研究表明 :双燃料发动机初始放热率比纯柴油大 ,若着火始点在上止点后 ,双燃料缸内最大爆发压力比纯柴油低 ,否则比纯柴油高 ;控制双燃料发动机着火始点是控制缸内最大爆发压力和 NOx 排放的关键 ,双燃料发动机着火始点应在上止点后 ,可以使发动机爆发压力和 NOx 排放比纯柴油低。 相似文献
2.
天然气/柴油机双燃料燃烧特性及规律的研究 总被引:11,自引:1,他引:11
通过试验及其分析、探讨天然气和柴油复合燃烧特性规律,并具体阐述负荷,转速、替代率、引燃料油时,进气混合气浓度,供油提前角和燃烧室形式等因素对双燃料燃烧压力变化规律,放热规律、着火特性,最高替代率变化规律等的影响,特别指出了天然气/柴油机双燃料燃烧的主要特征、存在的主要问题和需要采取的技术措施。 相似文献
3.
本文通过燃用汽油及液化石油气的对比试验得出了两种燃料的对燃烧特性,从而在燃烧机理上分析了其燃烧特性。结论表明以汽油机改装的LPG发动机虽然自身带有一些缺陷,但通过改装及调试可以获得较理想的动力性。 相似文献
4.
5.
利用CB366燃烧分析仪测录了柴油—液化石油气双燃料发动机和原柴油机在不同工况下的示功图,进行了放热规律的计算和对比分析,得出了有关双燃料发动机燃烧特性的结论 相似文献
6.
双燃料发动机的燃烧模型 总被引:3,自引:0,他引:3
针对双燃料发动机燃烧特性,建立了柴油喷雾扩散燃烧子模型和气体燃烧均质混合气火焰传播燃烧子模型,应用该模型研究了双燃料发动机燃烧机理,计算结果和实验结果相当吻合。计算表明:当引燃柴油比例较大时,双燃料发动机燃烧过程以喷雾混合控制燃烧为主,柴油喷雾扩散燃烧模型与实测较吻合;当柴油比例较小时,该过程以均质混合气火焰传播燃烧为主,均质混合气火焰传播燃烧模型与实测软吻合。计算结果表明,引燃柴油量对双燃料发动机性能影响较大,引燃柴油减少,着火滞燃期延长,缸内最大爆发压力升高。 相似文献
7.
本文介绍了LPG放热率计算的工质热力学参数及其燃烧化学的计算模型,建立了双区放热模型,对影响模型精度的因素进行了理论及实验研究。 相似文献
8.
柴油—液化石油气双燃料发动机放热规律的研究 总被引:5,自引:0,他引:5
利用CB366燃烧分析仪测录了柴油-液化石油气双燃料发动机和原柴油机在不同工况下的示功图,进行了放热规律的计算和对比分析,得出了有关双燃料发动机燃烧特性的结论。 相似文献
9.
10.
压燃式双燃料发动机燃烧模型的新进展 总被引:2,自引:0,他引:2
本文提出了用含有119个化学反应式,41种化学组分的燃烧模型,实现了对甲烷(CH4)-柴油双燃料发动机燃烧过程的描述。与现有模型相比,本模型创建了化学反应机理子模型及相应的气相反主尖的理论体系,克服了凭经验组合反应机理的缺点;用多区燃烧模型代替了对引燃油瞬时燃尽假设的引燃油燃烧模型,在传热学模型中考虑了辐射因素,并局用热力学性质代替整体热力学性质进行传热计算。 相似文献
11.
Geetesh Goga Sunil Kumar Mahla Amit Dhir Haeng Muk Cho 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2021,43(1):120-132
ABSTRACT For fetching day-to-day energy needs, current energy requirement majorly depends on fossil fuels. But ambiguous matter like abating petroleum products and expanding air pollution has enforced the experts to strive for another fuel which can be used as an alternative or reduce the applications of fossil fuels. Considering the issues, the main objective of the present study is to find the feasibility by using blends of rice bran oil biodiesel and diesel which are used as pilot fuels by blending 10% and 20% biodiesel in fossil diesel and biogas, introduced as gaseous fuel by varying its mass flow rate in a dual-fuel engine mode. An experimentation study was carried out to find the performance and emission parameters of the engine relative to pure diesel. The results were very much similar to the majority of researchers who used biodiesel and gaseous fuels in a dual-fuel engine. Brake specific fuel consumption (BSFC) of the engine was noticed to have increased, while brake thermal efficiency was on the lower side in dual fuel mode in comparison with regular diesel. In relation with conventional diesel, it was noticed that combined effect of rice bran methyl esters and varying mass flow rate of biogas showed a decrement in NO x and smoke emissions, whereas HC and CO exhalations were on higher side when biogas and biodiesel were utilized collectively in dual-fuel engine. Hence, it was concluded that combination of blends of biodiesel and diesel and introduction of biogas in the engine can be a promising combination which can be used as a substitute fuel for addressing future energy needs. 相似文献
12.
Heat release rate markers for premixed combustion 总被引:2,自引:0,他引:2
The validity of the commonly used flame marker for heat release rate (HRR) visualization, namely the rate of the reaction OH + CH2O ⇔ HCO + H2O is re-examined. This is done both for methane–air and multi-component fuel–air mixtures for lean and stoichiometric conditions. Two different methods are used to identify HRR correlations, and it is found that HRR correlations vary strongly with stoichiometry. For the methane mixture there exist alternative HRR markers, while for the multi-component fuel flame the above correlation is found to be inadequate. Alternative markers for the HRR visualization are thus proposed and their performance under turbulent conditions is evaluated using DNS data. 相似文献
13.
《International Journal of Hydrogen Energy》2023,48(4):1602-1624
In the present study, Reynolds-Averaged Navier-Stokes simulations together with a novel flamelet generated manifold (FGM) hybrid combustion model incorporating preferential diffusion effects is utilised for the investigation of a hydrogen-blended diesel-hydrogen dual-fuel engine combustion process with high hydrogen energy share. The FGM hybrid combustion model was developed by coupling laminar flamelet databases obtained from diffusion flamelets and premixed flamelets. The model employed three control variables, namely, mixture fraction, reaction progress variable and enthalpy. The preferential diffusion effects were included in the laminar flamelet calculations and in the diffusion terms in the transport equations of the control variables. The resulting model is then validated against an experimental diesel-hydrogen dual-fuel combustion engine. The results show that the FGM hybrid combustion model incorporating preferential diffusion effects in the flame chemistry and transport equations yields better predictions with good accuracy for the in-cylinder characteristics. The inclusion of preferential diffusion effects in the flame chemistry and transport equations was found to predict well several characteristics of the diesel-hydrogen dual-fuel combustion process: 1) ignition delay, 2) start and end of combustion, 3) faster flame propagation and quicker burning rate of hydrogen, 4) high temperature combustion due to highly reactive nature of hydrogen radicals, 5) peak values of the heat release rate due to high temperature combustion of the partially premixed pilot fuel spray with entrained hydrogen/air and then background hydrogen-air premixed mixture. The comparison between diesel-hydrogen dual-fuel combustion and diesel only combustion shows early start of combustion, longer ignition delay time, higher flame temperature and NOx emissions for dual-fuel combustion compared to diesel only combustion. 相似文献
14.
15.
16.
17.
18.
介绍了热力学计算的基本原理及基于AVL Indicom的热力学计算的基本理论,探讨了内燃机燃烧放热基本过程与关键参数,并提出了一种利用燃烧放热基本参数更为迅速准确地判断最佳点火角的方法。 相似文献
19.
20.
A combined Organic Rankine Cycle (ORC) system with liquefied nature gas (LNG) cold energy and dual-fuel (DF) marine engine waste heat utilization was proposed. Engine exhaust gas and engine jacket cooling water were adopted as parallel heat sources. Thermo-economic analyses of the proposed system with 32 working fluids combinations were performed. Two objective functions covering thermal efficiencies and economic index were employed for performance evaluation. Afterward, the effects of operation pressure on the objective functions were investigated. Finally, the optimal conditions were obtained from the Pareto front with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) method. The results show that the proposed ORC system has better energy recovery performances than the parallel ORC system. R1150-R600a-R290, R1150-R601a-R600a, and R170-R601-R290 are determined as the three most promising working fluids combinations. Under optimized conditions, the output power range is 199.97 to 218.51 kW, the energy efficiency range is 13.64% to 15.62%, and the exergy efficiency range is 25.29% to 27.3%. The payback period ranges from 8.36 to 8.74 years. The working fluids selection helps to reduce the exergy destruction of intermediate heat exchanger, which could be up to 30.59%. 相似文献