首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
基于FLUENT19.0软件,建立了激光焊接热-流耦合模型,对比分析了不同表面张力温度系数(为负值)对熔池流场的影响.结果表明,随着表面张力温度系数的减小,熔池后方顺时针漩涡的流动趋势逐渐减弱,甚至消失,而且焊接飞溅的数量增多.纵截面熔池长度逐渐增加,纵截面熔池流体最大流动速度逐渐增大,熔池横截面的面积逐渐减小.当表面张力温度系数为-2.5×10-4 N/(m·K)时,熔池长度平均值为3.28 mm、熔池流体最大流动速度的平均值为2.89 m/s、熔池横截面面积的平均值为4.52 mm2;当表面张力温度系数为-3.5×10-4 N/(m·K)时,熔池长度平均值为3.73 mm、熔池流体最大流动速度的平均值为3.53 m/s、熔池横截面面积的平均值为4.03 mm2;当表面张力温度系数为-4.9×10-4 N/(m·K)时,熔池长度平均值为4.14 mm、熔池流体最大流动速度的平均值为4.09 m/s、熔池横截面面积的平均值为3.28 mm2.  相似文献   

2.
TC4钛合金空心叶片激光快速成形过程温度场数值模拟   总被引:3,自引:2,他引:3  
建立了空心叶片激光快速成形过程温度场瞬态有限元数值模型,模拟了TC4钛合金空心叶片激光快速成形过程的温度场演变过程。结果表明:空心叶片激光快速成形温度场随熔池的移动及凝固和空心叶片逐层连续叠加沉积而动态演化。开始阶段,熔池较小,冷却速率较大(-1735℃/s左右),温度梯度较高(8.34×10^5℃/m左右),随着熔覆高度的增加,熔化区扩大,熔池冷却速率减小,温度梯度降低,3/4叶片高度处熔池重熔深度大于上两层熔覆层高度,熔池冷却速率为-438℃/s,熔池温度梯度为3.67×10^5℃/m,成形结束时,激光快速成形空心叶片温度沿Z轴方向呈梯度分布,基座内温度沿Z轴方向上升较慢,温度梯度为5×10^3℃/m,而从叶片根部到其顶部温度上升较快,温度梯度为2.6×10^4℃/m,到达叶片顶部温度为1542℃左右,表明虽然随熔覆高度的增加成形叶片表面换热作用加强,但整体散热方向没变,仍是从上至下,从熔池到基座。  相似文献   

3.
退火态Ti2AlNb合金板材的超塑性变形行为   总被引:1,自引:0,他引:1  
研究退火态Ti2AlNb合金热轧板材在温度为940~980 ℃和初始应变速率为8.33×10-4~1×10-2 s-1时的超塑变形行为.结果表明:该合金具有良好的超塑性;在本实验范围内,其最高伸长率可达400%,最佳超塑条件为960 ℃和1.67×10-3 s-1,可用作超塑性成形工艺制作复杂构件.  相似文献   

4.
纳米ZrO2(Y2O3)强韧化的双尺度Mo-12Si-8.5B复合材料具有优异的力学性能,但在25~1000℃范围处于空气和真空下的干滑动摩擦学性能尚不清楚。采用销-盘式摩擦磨损试验,比较研究Mo-12Si-8.5B-2.5%ZrO2(Y2O3)/Si3N4配对副的干摩擦学性能。结果表明:在空气中,随着测试温度的增加,摩擦因数先增加后减小,800℃时达到最小值(为0.28);复合材料的磨损率在25~600℃时为6.02~69.4×10-6 mm3/(N·m),800~1000℃的磨损率增加到8.7×10-3~95×10-3 mm3/(N·m)。在真空中,从25℃升高到400℃时,摩擦因数从0.62逐渐降低至0.49,600℃时急剧增加到1.04,而在800℃和1000℃时摩擦因数又分别降低到0.82和0....  相似文献   

5.
热压烧结添加MoS2的Ti3SiC2复合陶瓷及性能   总被引:1,自引:0,他引:1  
利用热压烧结工艺(Hot—Pressing Sintering HP)制备不同MoS2质量含量的Ti3SiC2复合陶瓷,并研究其性能。研究表明,在烧结温度为1400℃,30MPa压力,保温60min的条件下,Ti3SiC2复合陶瓷烧结体的相对密度达99%以上。在Ti3SiC2中添加MoS2能大幅提高材料的性能,当MoS2含量为4州%时,Ti3SiC2复合陶瓷的显微硬度达到7.83GPa,同时它的电导率达到10.05×10^6S·m^-1。在载荷为38N和转速为400r/min下,Ti3SiC2复合陶瓷在干摩擦和油润滑两种摩擦条件下的摩擦系数分别为0.176~0.283和0.062~0.134,并且试样的磨损率分别为2.657×10^-6mm^3·N^-1·m^-1和1.968×10^-7mm^3·N^-1·m^-1,比单相Ti3SiC2陶瓷的磨损率(9.9×10^-5mm^3·N^-1·in^-1)小。  相似文献   

6.
用最小二乘法对渗硅TiAl基合金在900、1000、1100和1200 ℃的循环氧化数据进行了拟合.结果表明:渗硅TiAl基合金900 ℃氧化在所测试的118 h内氧化动力学曲线呈抛物线规律;1000 ℃氧化在0~50 h之间呈抛物线型规律,50~118 h之间呈直线型氧化规律;1100 ℃氧化在0~4 h之间呈抛物线型规律,4~8 h之间呈直线型氧化规律,8~16 h呈二次型加速氧化规律,16 h出现剥落现象;1200 ℃循环氧化在0~4 h呈二次型加速氧化规律,4 h后出现剥落现象.相应的氧化速率常数为:900 ℃时Kp≈4.924×10-5 mg2cm-4h-1,1000 ℃时Kp≈7.778×10-5 mg2cm-4h-1,1100 ℃时Kp≈9.392×10-2 mg2cm-4h-1.并对渗硅层在温度超过1000 ℃后的氧化机制进行了初步探讨.  相似文献   

7.
采用综合热分析仪、热膨胀分析仪、激光导热仪和热/力模拟试验机分别对2507双相不锈钢进行了综合热分析试验、热膨胀试验、激光导热试验和高温力学试验,以控制连铸坯表面凹陷、裂纹等缺陷。结果表明:2507双相不锈钢的固相线温度为1 469.5℃,液相线温度为1 446.2℃;温度在100~750℃时,2507不锈钢平均线膨胀系数为16.606 1×10-6 K-1,温度在750~1 020℃之间的平均线膨胀系数为14.916 2×10-6 K-1,温度在1 020~1 400℃时平均线膨胀系数为20.475 1×10-6 K-1;在降温过程中,平均线膨胀系数为-22.690 3×10-6 K-1;2507不锈钢的密度随温度升高而降低;温度从650℃升至1 150℃,2507不锈钢的热扩散系数增大了25%;导热系数随温度升高而增大,在1 000℃时导热系数达到最大值34 W/(m·K);温度超过1 200℃之后,抗拉强度...  相似文献   

8.
通过在不同加热温度和保温时间下等温奥氏体化,研究了10Cr12Ni3Mo2VN马氏体耐热钢奥氏体晶粒长大行为。结果表明:900~1150℃温度区间内,10Cr12Ni3Mo2VN马氏体耐热钢奥氏体晶粒尺寸随加热温度升高、保温时间延长而增大,且随保温时间延长,晶粒尺寸均匀性下降;由于碳氮化物在1100℃以上发生溶解,1100℃以上奥氏体晶粒发生粗化;1200~1280℃温度区间内,由于δ铁素体相的析出,10Cr12Ni3Mo2VN马氏体耐热钢奥氏体晶粒尺寸随加热温度升高而减小。拟合得到900~1150℃温度区间内10Cr12Ni3Mo2VN钢奥氏体晶粒生长模型为D=6.67×107×t0.303×exp(-1.81×105/RT)。  相似文献   

9.
研究了定向凝固Ni 2 0Al 2 7Fe 3Nb金属间化合物的显微组织和高温拉伸条件下的变形行为。结果表明 ,该合金的显微组织由枝晶 β NiAl相和枝晶间γ/γ′相组成。在 95 0~ 110 0℃之间以 5 .2× 10 -4~ 1.0 4× 10 -2s-1的初始应变速率拉伸变形时 ,该合金表现出类似超塑性的变形行为 ,应变速率敏感指数m在 0 .2 1~ 0 .4 5之间。在 10 5 0℃以 5 .2× 10 -3 s-1的初始应变速率拉伸时 ,获得最大延伸率 2 6 0 % ,m =0 .2 9。通过显微组织观察 ,对这种具有类似超塑性变形行为的机理进行了初步的讨论  相似文献   

10.
采用不同浇注温度制备了机械零件用铸造Al-Si-V铝合金,并进行了高温磨损和高温氧化试验。结果表明,浇注温度在680~740℃时,合金的高温磨损性能和高温抗氧化性能均先提高后下降。与680℃浇注温度的合金相比,710℃浇注的合金500℃高温磨损体积在62×10~(-3) mm~3的基础上减小33×10~(-3) mm~3,500℃×24 h高温氧化后的质量变化率从13.4%减小到7.8%。合金的浇注温度优选为710℃。  相似文献   

11.
采用Sysweld软件对激光熔覆钴基合金涂层的温度场、应力场进行了数值模拟.结果表明,随着扫描速度的增加,熔池形状变得窄而长,熔覆层各点的峰值温度停留时间缩短,熔池的深度、宽度相应减小;熔池及热影响区各点的温度随着与激光热源距离的增加而明显降低;此外,随着激光扫描速度的增大,熔覆层的残余应力和残余变形相应增大.  相似文献   

12.
激光快速成形过程中粉末与熔池交互作用的数值模拟   总被引:2,自引:0,他引:2  
建立了描述激光快速成形过程中气/粉两相流送粉、粉末与熔池交互作用及激光熔覆成形温度场的联合模型.采用有限单元生死技术模拟了熔池形成和自由界面形状演化及熔覆层的沉积过程:根据界面温度与粉末粒子动量损失状况模拟了熔池对粒子的捕捉以及工件对粉末的反射,并采用Lagrangian粒子追踪模型实现了对粉末颗粒的跟踪.在此基础上,模拟了激光快速成形过程中316L不锈钢粉末、激光与熔池的交互作用过程.计算结果与实验结果吻合.  相似文献   

13.
通过选区激光熔化(SLM)技术制备Al-Mg-Sc-Zr铝合金,系统研究了不同工艺参数对铝合金粉末成形性以及不同时效处理条件对SLM成形样品组织和力学性能的影响。结果表明,在高激光功率和低激光扫描速度下,SLM成形样品的致密度较高。沿样品沉积方向可观察到熔池层层堆叠的显微组织,熔池边界和熔池内部均存在细小纳米颗粒。经不同温度时效处理后,样品的硬度和压缩屈服强度先增加后降低。SLM成形样品经400℃时效处理3 h后屈服强度达到最大值469±4 MPa。  相似文献   

14.
对45钢上Fe基合盒粉未激光表面合金化熔池,从三个不同的侧面进行了分析。在理论分析和试验的基础上,提出了激光表面合金化熔池的立体对流模型,同时,对合金层进行成分分析。结果表明:正由于熔池内部的对流,使合金层成分在宏观上趋于均匀。  相似文献   

15.
Laser powder-bed fusion additive manufacturing of metals employs high-power focused laser beams. Typically, the depth of the molten pool is controlled by conduction of heat in the underlying solid material. But, under certain conditions, the mechanism of melting can change from conduction to so-called “keyhole-mode” laser melting. In this mode, the depth of the molten pool is controlled by evaporation of the metal. Keyhole-mode laser melting results in melt pool depths that can be much deeper than observed in conduction mode. In addition, the collapse of the vapor cavity that is formed by the evaporation of the metal can result in a trail of voids in the wake of the laser beam. In this paper, the experimental observation of keyhole-mode laser melting in a laser powder-bed fusion additive manufacturing setting for 316L stainless steel is presented. The conditions required to transition from conduction controlled melting to keyhole-mode melting are identified.  相似文献   

16.
致密度是评价增材制造成型件性能的重要参数之一,而高致密度成型件对应的工艺参数需要大量实验研究获得。针对该问题,本文建立了基于工艺参数的熔池致密度预测模型,能够有效地预测熔合不良引起的孔隙,进而为激光选区熔化工艺参数的选择和优化提供更多的参考。模型采用有限元分析和数值计算软件获得熔池尺寸以及模拟多层多道次的熔池拼接形貌,并预测工艺参数对应的致密度。同时在熔池预测模型中引入了波动系数、偏转角度以及层间扫描转角,以此兼顾熔池尺寸波动、熔池倾斜以及层间扫描转角对熔池模拟结果的影响。最终通过HR-2不锈钢选区激光熔化实验对预测模型的可行性进行验证。结果表明,模型预测结果与成型件熔池实验结果吻合较好,致密度预测结果与实测偏差在2%以内。  相似文献   

17.
利用晶体生长的最小过冷度判据。对DD2单晶合金激光重熔区组织的生长速度进行了分析,建立了枝晶尖端生长速度与激光束扫描速度和固液界面前进速度的关系。根据此分析对熔池组织进行了预测。并与实验结果进行了比较,发现激光熔池中枝晶组织的生长方向强烈地受基材晶粒取向和激光束扫描方向的影响。枝晶生长条件下,择期取向对枝晶生长方向的影响要较热流的影响大。理论预测与实验结果相吻合。  相似文献   

18.
铝合金液态填充焊的工艺特性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
彭进  李俐群  林尚扬  邓洲 《焊接学报》2014,35(10):45-48
采用高速摄像和工艺试验相结合的方法分析了液态填充焊的影响因素,进行了焊接接头质量分析.结果表明,激光液态填充焊有两种填充模式:焊丝半熔态、焊丝全熔态.焊接电流较小时,焊丝为半熔态,液态填材顺焊丝流向熔池;焊接电流较大时,焊丝为全熔态,依靠间隙的毛细作用,能稳定的流入熔池中.随着焊接速度的提高匙孔距熔池边缘的距离变小.为了使液态填材稳定的过渡到熔池中,光丝间距应控制在-0.5~2.0 mm范围内.经过接头质量分析发现:与激光填丝焊相比,液态填充焊接焊缝中的气孔率明显降低.  相似文献   

19.
焊丝熔化方式对激光焊接过程的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了两种焊丝熔化方法(电弧预熔丝激光焊、激光填丝焊)激光焊接过程对匙孔稳定性以及焊缝成形的影响,进一步研究了焊丝熔化方法对焊接接头质量的影响,并对比分析了两种焊丝熔化方式对焊接速度的适应性. 结果表明,电弧预熔丝激光焊过程中,熔池表面匙孔开口尺寸变化不大,匙孔较为稳定;激光填丝焊方法由于熔化的液态金属距离匙孔边缘很近,焊接过程中熔池表面匙孔开口尺寸变化较大,而且容易出现熔池表面匙孔的闭合. 与激光填丝焊相比,电弧预熔丝激光焊熔化的焊丝端部可以沿熔池边缘流入,与匙孔边缘的距离较远,匙孔稳定性较好,焊缝气孔数量较少. 当焊接速度为8 m/min时,电弧预熔丝激光焊的焊缝成形良好;而激光填丝焊焊缝背面成形不连续,并且出现了未焊透的缺陷.  相似文献   

20.
介绍了准分子激光微加工的机理、特点和应用。激光微加工具有非接触、有选择性加工、热影响区域小、高精度与高重复率等优点。既可以通过材料去除方式,也可以通过材料加成方式进行微加工成形。探讨了准分子激光的熔覆特性,实验表明:准分子激光瞬时产生很高的功率密度,具有很高的温度梯度。在基体表面发生剧烈的光热交互作用;同时产生巨大的光压和等离子体.形成大量等离子体小颗粒,沉积在熔池周围。另外,由于准分子激光的脉冲作用,熔池中有明显的液相冲击波纹会影响激光熔覆层的表面质量,可以通过优化激光工艺参数改善熔覆层的表面质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号