首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
遥感提取叶绿素含量的方法是精准农业的重要研究方向之一,但是如何用冠层光谱数据有效地提取叶绿素含量仍然是一个难点。本文用光谱指数TCARI和OSAVI的组合建立提取冬小麦冠层叶绿素含量的关系式,并使用实验田获取的冬小麦冠层光谱以及与之同步的机载高光谱传感器OMIS数据进行了验证。通过误差分析讨论了该方法用于遥感高光谱数据时需要注意的问题,表明大气校正的精度,传感器的信噪比以及波段中心的漂移是模型反演精度的主要制约因素。  相似文献   

2.
Reliable estimation of leaf chlorophyll-a and -b content (chl-b) at canopy scales is essential for monitoring vegetation productivity, physiological stress, and nutrient availability. To achieve this, narrow-band vegetation indices (VIs) derived from imaging spectroscopy data are commonly used. However, VIs are affected by canopy structures other than chl-b, such as leaf area index (LAI) and leaf mean tilt angle (MTA). In this study, we evaluated the performance of 58 VIs reported in the literature to be chl-b-sensitive against a unique measured set of species-specific leaf angles for six crop species in southern Finland. We created a large simulated canopy reflectance database (100,000 canopy configurations) using the physically based PROSAIL (coupling of PROSPECT and SAIL (Scattering by Arbitrarily Inclined Leaves) radiative transfer models) model. The performance of model-simulated indices was compared against airborne AISA Eagle II imaging spectroradiometer data and field-measured chl-a + b, LAI, and MTA values. In general, LAI had a positive effect on the strength of the correlation between chl-a + b and VIs while MTA had a negative effect in both measured and simulated data. Three indices (REIP (red edge inflection point), TCARI (transformed chlorophyll absorption ratio index)/OSAVI (optimized soil-adjusted vegetation index), and CTR6 (Carter indices)) showed strong correlations with chl-a + b and similar performance in model-simulated and measured data set. However, only two (TCARI/OSAVI and CTR6) were independent from LAI and MTA. We consider these two indices robust proxies of crop leaf chl-b.  相似文献   

3.
Chlorophyll content can be used as an indicator to monitor crop diseases. In this article, an experiment on winter wheat stressed by stripe rust was carried out. The canopy reflectance spectra were collected when visible symptoms of stripe rust in wheat leaves were seen, and canopy chlorophyll content was measured simultaneously in laboratory. Continuous wavelet transform (CWT) was applied to process the smoothed spectral and derivative spectral data of winter wheat, and the wavelet coefficient features obtained by CWT were regarded as the independent variable to establish estimation models of chlorophyll content. The hyperspectral vegetation indices were also regarded as the independent variable to build estimation models. Then, two types of models above-mentioned were compared to ascertain which type of model is better. The cross-validation method was used to determine the model accuracies. The results indicated that the estimation model of chlorophyll content, which is a multivariate linear model constructed using wavelet coefficient features extracted by Mexican Hat wavelet function processing the smoothed spectrum (WSMH1 and WSMH2), is the best model. It has the highest estimation accuracy with modelled coefficient of determination (R2) of 0.905, validated R2 of 0.913, and root mean square error (RMSE) of 0.288 mg fg?1. The univariate linear model built by wavelet coefficient feature of WSMH1 is secondary and the modelled R2 is 0.797, validated R2 is 0.795, and RMSE is 0.397 mg fg?1. Both estimation models are better than those of all hyperspectral vegetation indices. The research shows that the feature information of canopy chlorophyll content of winter wheat can be captured by wavelet coefficient features which are extracted by the method of CWT processing canopy reflectance spectrum data. Therefore, it could provide theoretical support on detecting diseases of crop by remote sensing quantitatively estimating chlorophyll content.  相似文献   

4.
An investigation of the estimation of leaf biochemistry in open tree crop canopies using high-spatial hyperspectral remote sensing imagery is presented. Hyperspectral optical indices related to leaf chlorophyll content were used to test different radiative transfer modelling assumptions in open canopies where crown, soil and shadow components were separately targeted using 1 m spatial resolution ROSIS hyperspectral imagery. Methods for scaling-up of hyperspectral single-ratio indices such as R750/R710 and combined indices such as MCARI, TCARI and OSAVI were studied to investigate the effects of scene components on indices calculated from pure crown pixels and from aggregated soil, shadow and crown reflectance. Methods were tested on 1-m resolution hyperspectral ROSIS datasets acquired over two olive groves in southern Spain during the HySens 2002 campaign conducted by the German Aerospace Center (DLR). Leaf-level biochemical estimation using 1-m ROSIS data when targeting pure olive tree crowns employed PROSPECT-SAILH radiative transfer simulation. At lower spatial resolution, therefore with significant effects of soil and shadow scene components on the aggregated pixels, a canopy model to account for such scene components had to be used for a more appropriate estimation approach for leaf biochemical concentration. The linked models PROSPECT-SAILH-FLIM improved the estimates of chlorophyll concentration from these open tree canopies, demonstrating that crown-derived relationships between hyperspectral indices and biochemical constituents cannot be readily applied to hyperspectral imagery of lower spatial resolutions due to large soil and shadow effects. Predictive equations built on a MCARI/OSAVI scaled-up index through radiative transfer simulation minimized soil background variations in these open canopies, demonstrating superior performance compared to other single-ratio indices previously shown as good indicators of chlorophyll concentration in closed canopies. The MCARI/OSAVI index was demonstrated to be less affected than TCARI/OSAVI by soil background variations when calculated from the pure crown component even at the typically low LAI orchard and grove canopies.  相似文献   

5.
6.
The present study investigated the use of physiological indices calculated from hyperspectral remote sensing imagery as potential indicators of wine grape quality assessment in vineyards affected by iron deficiency chlorosis. Different cv. Tempranillo/110 Richter vineyards located in northern Spain, affected and non-affected by iron chlorosis, were identified for field and airborne data collection. Airborne campaigns imaged a total of 14 study areas in both 2004 and 2005 using the AHS hyperspectral sensor, which acquired 20 spectral bands in the VIS-NIR region. Field measurements were conducted in each study site to obtain leaf and grape physiological parameters potentially linked to wine quality. Simulations carried out with the rowMCRM radiative transfer model demonstrated the feasibility of estimating leaf chlorophyll a + b (Cab) content using TCARI/OSAVI from AHS spectral bands. In addition to traditional structural vegetation indices (NDVI) and successful canopy-level chlorophyll indices (TCARI/OSAVI), other innovative physiological indices sensitive to changes in carotenoid (Car) and anthocyanin (Anth) content in leaves were assessed from the imagery. The rowMCRM model simulations were used to evaluate canopy structural effects on these physiological indices as a function of the typical row-structured canopy variables in vineyards (LAI, crown width, row distances, Cab content and soil background effects). Modeling results concluded that Car (Gitelson-Car2) and Anth (Gitelson-Anth) indices were highly affected by canopy structure (Cw, Vs) and soil background (ρs). Field measurements of grape composition and quality were used to assess potential relationships with physiological indices sensitive to foliar pigment content (Cab, Car and Anth). NDVI and TCARI/OSAVI indices yielded lower relationships for CIRG and IMAD must quality parameters than Car and Anth physiological indices. These results suggest that the increase in carotenes and anthocyanins due to drought, thermal damage or micronutrient deficiencies is a better indicator to detect phenolic ripening difficulties for vines affected by iron chlorosis than chlorosis detection. Therefore, the potential use of physiological remote sensing indices related to carotene and anthocyanin pigments demonstrates their importance as grape quality indicators in vineyards affected by iron chlorosis.  相似文献   

7.
Several methods for extracting the chlorophyll sensitive red‐edge position (REP) from hyperspectral data are reported in literature. This study is a continuation of a recent paper published as ‘A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation method’. The method was validated experimentally for estimation of foliar nitrogen concentrations of rye, maize and mixed grass/herb. The objective of this study was to test the utility of the linear extrapolation method under different conditions including variable canopy biophysical parameters, solar zenith angle, sensor noise and spectral bandwidth. REPs were extracted from synthetic canopy spectra that were simulated using properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves (SAILH) radiative transfer models. REPs extracted by the linear extrapolation method involving wavebands at 680, 694, 724 and 760 nm produced the highest correlation (R 2 = 0.75) with leaf chlorophyll content with minimal effects of leaf and canopy biophysical confounders (leaf area index, leaf inclination distribution and leaf dry matter content) compared to traditional techniques including the linear interpolation, inverted Gaussian modelling and polynomial fitting techniques. In addition, the new technique is insensitive to changes in solar zenith angle. However, the advantage of using the linear extrapolation method compared to the various alternative methods diminishes with increasing sensor noise and decreasing spectral resolution. In summary, the linear extrapolation technique confirms its high potential for leaf chlorophyll estimation. The efficacy of the technique under field conditions needs to be established.  相似文献   

8.
Hyperspectral remote sensing has great potential for accurate retrieval of forest biochemical parameters. In this paper, a hyperspectral remote sensing algorithm is developed to retrieve total leaf chlorophyll content for both open spruce and closed forests, and tested for open forest canopies. Ten black spruce (Picea mariana (Mill.)) stands near Sudbury, Ontario, Canada, were selected as study sites, where extensive field and laboratory measurements were carried out to collect forest structural parameters, needle and forest background optical properties, and needle biophysical parameters and biochemical contents chlorophyll a and b. Airborne hyperspectral remote sensing imagery was acquired, within one week of ground measurements, by the Compact Airborne Spectrographic Imager (CASI) in a hyperspectral mode, with 72 bands and half bandwidth 4.25-4.36 nm in the visible and near-infrared region and a 2 m spatial resolution. The geometrical-optical model 4-Scale and the modified leaf optical model PROSPECT were combined to estimate leaf chlorophyll content from the CASI imagery. Forest canopy reflectance was first estimated with the measured leaf reflectance and transmittance spectra, forest background reflectance, CASI acquisition parameters, and a set of stand parameters as inputs to 4-Scale. The estimated canopy reflectance agrees well with the CASI measured reflectance in the chlorophyll absorption sensitive regions, with discrepancies of 0.06%-1.07% and 0.36%-1.63%, respectively, in the average reflectances of the red and red-edge region. A look-up-table approach was developed to provide the probabilities of viewing the sunlit foliage and background, and to determine a spectral multiple scattering factor as functions of leaf area index, view zenith angle, and solar zenith angle. With the look-up tables, the 4-Scale model was inverted to estimate leaf reflectance spectra from hyperspectral remote sensing imagery. Good agreements were obtained between the inverted and measured leaf reflectance spectra across the visible and near-infrared region, with R2 = 0.89 to R2 = 0.97 and discrepancies of 0.02%-3.63% and 0.24%-7.88% in the average red and red-edge reflectances, respectively. Leaf chlorophyll content was estimated from the retrieved leaf reflectance spectra using the modified PROSPECT inversion model, with R2 = 0.47, RMSE = 4.34 μg/cm2, and jackknifed RMSE of 5.69 μg/cm2 for needle chlorophyll content ranging from 24.9 μg/cm2 to 37.6 μg/cm2. The estimates were also assessed at leaf and canopy scales using chlorophyll spectral indices TCARI/OSAVI and MTCI. An empirical relationship of simple ratio derived from the CASI imagery to the ground-measured leaf area index was developed (R2 = 0.88) to map leaf area index. Canopy chlorophyll content per unit ground surface area was then estimated, based on the spatial distributions of leaf chlorophyll content per unit leaf area and the leaf area index.  相似文献   

9.
10.
Optimizing nitrogen (N) fertilization in crop production by in-season measurements of crop N status may improve fertilizer N use efficiency. Hyperspectral measurements may be used to assess crop N status indirectly by estimating leaf and canopy chlorophyll content. This study evaluated the ability of the PROSAIL canopy-level reflectance model to predict leaf chlorophyll content of spring wheat (Triticum aestivum L.) during the growth stages between pre-tillering (Zadoks Growth Stage (ZGS 15)) to booting (ZGS50). Spring wheat was grown under different N fertility rates (0–200 kg N ha?1) in 2002. Canopy reflectance, leaf chlorophyll content, N content and leaf area index (LAI) values were measured. There was a weakly significant trend for the PROSAIL model to over-estimate LAI and under-estimate leaf chlorophyll content. To compensate for this interdependency by the model, a canopy chlorophyll content parameter (the product of leaf chlorophyll content and LAI) was calculated. The estimation accuracy for canopy chlorophyll content was generally low earlier in the growing season. This failure of the PROSAIL model to estimate leaf and canopy variables could be attributed to model sensitivity to canopy architecture. Earlier in the growing season, full canopy closure was not yet achieved, resulting in a non-homogenous canopy and strong soil background interference. The canopy chlorophyll content parameter was predicted more accurately than leaf chlorophyll content alone at booting (ZGS 45). A strong relationship between canopy chlorophyll content and canopy N content at ZGS 45 indicates that the PROSAIL model may be used as a tool to predict wheat N status from canopy reflectance measurements at booting or later.  相似文献   

11.
A growing number of studies have focused on evaluating spectral indices in terms of their sensitivity to vegetation biophysical parameters, as well as to external factors affecting canopy reflectance. In this context, leaf and canopy radiative transfer models are valuable for modeling and understanding the behavior of such indices. In the present work, PROSPECT and SAILH models have been used to simulate a wide range of crop canopy reflectances in an attempt to study the sensitivity of a set of vegetation indices to green leaf area index (LAI), and to modify some of them in order to enhance their responsivity to LAI variations. The aim of the paper was to present a method for minimizing the effect of leaf chlorophyll content on the prediction of green LAI, and to develop new algorithms that adequately predict the LAI of crop canopies. Analyses based on both simulated and real hyperspectral data were carried out to compare performances of existing vegetation indices (Normalized Difference Vegetation Index [NDVI], Renormalized Difference Vegetation Index [RDVI], Modified Simple Ratio [MSR], Soil-Adjusted Vegetation Index [SAVI], Soil and Atmospherically Resistant Vegetation Index [SARVI], MSAVI, Triangular Vegetation Index [TVI], and Modified Chlorophyll Absorption Ratio Index [MCARI]) and to design new ones (MTVI1, MCARI1, MTVI2, and MCARI2) that are both less sensitive to chlorophyll content variations and linearly related to green LAI. Thorough analyses showed that the above existing vegetation indices were either sensitive to chlorophyll concentration changes or affected by saturation at high LAI levels. Conversely, two of the spectral indices developed as a part of this study, a modified triangular vegetation index (MTVI2) and a modified chlorophyll absorption ratio index (MCARI2), proved to be the best predictors of green LAI. Related predictive algorithms were tested on CASI (Compact Airborne Spectrographic Imager) hyperspectral images and, then, validated using ground truth measurements. The latter were collected simultaneously with image acquisition for different crop types (soybean, corn, and wheat), at different growth stages, and under various fertilization treatments. Prediction power analysis of proposed algorithms based on MCARI2 and MTVI2 resulted in agreements between modeled and ground measurement of non-destructive LAI, with coefficients of determination (r2) being 0.98 for soybean, 0.89 for corn, and 0.74 for wheat. The corresponding RMSE for LAI were estimated at 0.28, 0.46, and 0.85, respectively.  相似文献   

12.
Leaf chlorophyll content in coniferous forest canopies, a measure of stand condition, is the target of studies and models linking leaf reflectance and transmittance and canopy hyperspectral reflectance imagery. The viability of estimation of needle chlorophyll content from airborne hyperspectral optical data through inversion of linked leaf level and canopy level radiative transfer models is discussed in this paper. This study is focused on five sites of Jack Pine (Pinus banksiana Lamb.) in the Algoma Region (Canada), where field, laboratory and airborne data were collected in 1998 and 1999 campaigns. Airborne hyperspectral CASI data of 72 bands in the visible and near-infrared region and 2 m spatial resolution were collected from 20×20 m study sites of Jack Pine in 2 consecutive years. It was found that needle chlorophyll content could be estimated at the leaf level (r2=0.4) by inversion of the PROSPECT leaf model from needle reflectance and transmittance spectra collected with a special needle carrier apparatus coupled to the Li-Cor 1800 integrating sphere. The Jack Pine forest stands used for this study with LAI>2, and the high spatial resolution hyperspectral reflectance collected, allowed the use of the SPRINT canopy reflectance model coupled to PROSPECT for needle chlorophyll content estimation by model inversion. The optical index R750/R710 was used as the merit function in the numerical inversion to minimize the effect of shadows and LAI variation in the mean canopy reflectance from the 20×20 m plots. Estimates of needle pigment content from airborne hyperspectral reflectance using this linked leaf-canopy model inversion methodology showed an r2=0.4 and RMSE=8.1 μg/cm2 when targeting sunlit crown pixels in Jack Pine sites with pigment content ranging between 26.8 and 56.8 μg/cm2 (1570-3320 μg/g).  相似文献   

13.
The estimation of leaf nitrogen concentration (LNC) in crop plants is an effective way to optimize nitrogen fertilizer management and to improve crop yield. The objectives of this study were to (1) analyse the spectral features, (2) explore the spectral indices, and (3) investigate a suitable modelling strategy for estimating the LNC of five species of crop plants (rice (Oryza sativa L.), corn (Zea mays L.), tea (Camellia sinensis), gingili (Sesamum indicum), and soybean (Glycine max)) with laboratory-based visible and near-infrared reflectance spectra (300–2500 nm). A total of 61 leaf samples were collected from five species of crop plant, and their LNC and reflectance spectra were measured in laboratories. The reflectance spectra of plants were reduced to 400–2400 and smoothed using the Savitzky–Golay (SG) smoothing method. The normalized band depth (NBD) values of all bands were calculated from SG-smoothed reflectance spectra, and a successive projections algorithm-based multiple linear regression (SPA-MLR) method was then employed to select the spectral features for five species. The SG-smoothed reflectance spectra were resampled using a spacing interval of 10 nm, and normalized difference spectral index (NDSI) and three-band spectral index (TBSI) were calculated for all wavelength combinations between 400 and 2400 nm. The NDSI and TBSI values were employed to calibrate univariate regression models for each crop species. The leave-one-out cross-validation procedure was used to validate the calibrated regression models. Study results showed that the spectral features for LNC estimation varied among different crop species. TBSI performed better than NDSI in estimating LNC in crop plants. The study results indicated that there was no common optimal TBSI and NDSI for different crop species. Therefore, we suggest that, when monitoring LNC in heterogeneous crop plants with hyperspectral reflectance, it might be appropriate to first classify the data set considering different crop species and then calibrate the model for each species. The method proposed in this study requires further testing with the canopy reflectance and hyperspectral images of heterogeneous crop plants.  相似文献   

14.
ABSTRACT

Hyperspectral remote sensing is economical and fast, and it can reveal detailed spectral information of plants. Hence, hyperspectral data are used in this study to analyse the spectral anomaly behaviours of vegetation in porphyry copper mine areas. This analytical method is used to compare the leaf spectra and relative differences among the vegetation indices; then, the correlation coefficients were computed between the soil copper content and vegetation index of Quercus spinosa leaves at both the leaf scale and the canopy scale in the Chundu mine area with different geological backgrounds. Lastly, this study adopts hyperspectral data for the level slicing of vegetation anomalies in the Chundu mine area. The results showed that leaf spectra in the orebody and background area differed greatly, especially in the infrared band (750 nm – 1300 nm); moreover, some indices like the normalized water index (NWI) and normalized difference water index (NDWI) of Quercus spinosa and Lamellosa leaves are sensitive to changes in the geological background. Compared with the canopy, the leaf hyperspectral indices of Quercus spinosa in Chundu can better reflect soil cuprum (Cu) anomaly. In addition, the NWI and NDWI of Quercus spinosa are significantly correlated with the soil Cu content at both the canopy scale and the leaf scale. Consequently, the results of the vegetation anomaly level slicing can adequately reflect the plant anomalies from ore bodies and nearby areas, thereby providing a new ore-finding method for areas with a high degree of vegetation coverage.  相似文献   

15.
Radiative transfer models have seldom been applied for studying heterogeneous grassland canopies. Here, the potential of radiative transfer modeling to predict LAI and leaf and canopy chlorophyll contents in a heterogeneous Mediterranean grassland is investigated. The widely used PROSAIL model was inverted with canopy spectral reflectance measurements by means of a look-up table (LUT). Canopy spectral measurements were acquired in the field using a GER 3700 spectroradiometer, along with simultaneous in situ measurements of LAI and leaf chlorophyll content. We tested the impact of using multiple solutions, stratification (according to species richness), and spectral subsetting on parameter retrieval. To assess the performance of the model inversion, the normalized RMSE and R2 between independent in situ measurements and estimated parameters were used. Of the three investigated plant characteristics, canopy chlorophyll content was estimated with the highest accuracy (R2 = 0.70, NRMSE = 0.18). Leaf chlorophyll content, on the other hand, could not be estimated with acceptable accuracy, while LAI was estimated with intermediate accuracy (R2 = 0.59, NRMSE = 0.18). When only sample plots with up to two species were considered (n = 107), the estimation accuracy for all investigated variables (LAI, canopy chlorophyll content and leaf chlorophyll content) increased (NRMSE = 0.14, 0.16, 0.19, respectively). This shows the limits of the PROSAIL radiative transfer model in the case of very heterogeneous conditions. We also found that a carefully selected spectral subset contains sufficient information for a successful model inversion. Our results confirm the potential of model inversion for estimating vegetation biophysical parameters at the canopy scale in (moderately) heterogeneous grasslands using hyperspectral measurements.  相似文献   

16.
采用星地同步观测方法,对Hyperion影像进行预处理并提取玉米专题信息,计算与遥感影像同步获取的玉米地面实测光谱及其一阶微分形式,作物光谱指数参量与叶绿素含量之间的相关性。结果表明:作物叶绿素含量预测指数TCARI/OSAVI与叶绿素a和叶绿素b的相关性最好,R2分别为0.5694和0.5313。采用其与叶绿素含量进行回归分析,建立叶绿素反演模型。将回归结果应用到提取的玉米区域,得出叶绿素a和叶绿素b含量的空间分布图,直观显示玉米的长势状况,为农业估产和植被长势监测提供重要的数据源。  相似文献   

17.
There are two main parameters describing the amount of water in vegetation: the gravimetric water content (GWC) and the equivalent water thickness (EWT). In this study, we investigated the applicability of hyperspectral water-sensitive indices from canopy spectra for estimating canopy EWT (CEWT) and GWC. First, the spectral reflectance’s response to different levels of canopy water content was analysed and a noticeable increase in the slope of the near-infrared (NIR) shoulder of the canopy spectrum was observed. Next, the correlation between the CEWT and various hyperspectral water-sensitive indices was investigated. It was found that all of the indices could retrieve the CEWT of winter wheat well, with the coefficients of determination (R2) all being higher than 0.80. Finally, the retrieval performance of these indices for canopy GWC was evaluated and no significant correlation was observed between canopy GWC and the water-sensitive indices except for the spectral ratio index in the NIR shoulder region (NSRI). These results showed that the traditional water-sensitive vegetation indices are more sensitive to CEWT than to GWC, especially when the LAI is not highly correlated with the GWC, and that the NSRI is a potential vegetation index for use in the retrieval of GWC.  相似文献   

18.
Many algorithms have been developed for the remote estimation of biophysical characteristics of vegetation, in terms of combinations of spectral bands, derivatives of reflectance spectra, neural networks, inversion of radiative transfer models, and several multi-spectral statistical approaches. However, the most widespread type of algorithm used is the mathematical combination of visible and near-infrared reflectance bands, in the form of spectral vegetation indices. Applications of such vegetation indices have ranged from leaves to the entire globe, but in many instances, their applicability is specific to species, vegetation types or local conditions. The general objective of this study is to evaluate different vegetation indices for the remote estimation of the green leaf area index (Green LAI) of two crop types (maize and soybean) with contrasting canopy architectures and leaf structures. Among the indices tested, the chlorophyll Indices (the CIGreen, the CIRed-edge and the MERIS Terrestrial Chlorophyll Index, MTCI) exhibited strong and significant linear relationships with Green LAI, and thus were sensitive across the entire range of Green LAI evaluated (i.e., 0.0 to more than 6.0 m2/m2). However, the CIRed-edge was the only index insensitive to crop type and produced the most accurate estimations of Green LAI in both crops (RMSE = 0.577 m2/m2). These results were obtained using data acquired with close range sensors (i.e., field spectroradiometers mounted 6 m above the canopy) and an aircraft-mounted hyperspectral imaging spectroradiometer (AISA). As the CIRed-edge also exhibited low sensitivity to soil background effects, it constitutes a simple, yet robust tool for the remote and synoptic estimation of Green LAI. Algorithms based on this index may not require re-parameterization when applied to crops with different canopy architectures and leaf structures, but further studies are required for assessing its applicability in other vegetation types (e.g., forests, grasslands).  相似文献   

19.
Hyperspectral/multiangular data allow the retrieval of important vegetation properties at canopy level, such as the Leaf Area Index (LAI) and Leaf Chlorophyll Content. Current methods are based on the relationship between biophysical properties and retrievals from those spectral bands (from the complete hyperspectral/multiangular information) where specific absorption features are present within the considered spectral range. Furthermore, new sensors such as PROBA/CHRIS provide continuous hyperspectral reflectance measurements that can be considered as a continuous function of wavelength. The mathematical analysis of these continuous functions allows a new way of exploiting the relationships between spectral reflectance and biophysical variables by more powerful and stable mathematical tools, in particular for the retrieval of LAI and chlorophyll content. Within the overall context of the European Space Agency (ESA) Spectra Barrax Campaign (SPARC) experiment, an extensive field study was carried out in La Mancha, Spain, simultaneously to the overflight of airborne imaging spectrometers (AHS, HyMAP, ROSIS) and the overpass of CHRIS‐PROBA and MERIS sensors. During the SPARC‐2003 and SPARC‐2004 campaigns, numerous ground measurements were made in the Barrax study area (covering LAI, fCover, leaf chlorophyll a+b, leaf water content and leaf biomass), together with other complementary data, and a total of 17 CHRIS‐PROBA images were acquired. Representative points have been selected from a total of nine different crops, and also retrieved from the CHRIS‐PROBA images acquired within the days of the field campaign. About 250 reflectance spectra from five different observation angles have been analysed. Hyperspectral reflectance spectra have been adjusted by means of third‐degree polynomial functions between 500 nm and 750 nm, and correlations observed between LAI values and the coefficients of these polynomials yielded LAI as a result of the mathematical fitting. On the other hand, the area under the spectral reflectance curves has been calculated in the interval from 600 nm to 700 nm, the region of the red spectral interval where strong absorption features for chlorophyll have been observed, though areas under the curves are also strongly correlated to the chlorophyll content of the crops. Furthermore, a linear relationship between these areas and the chlorophyll content is proposed in this work. This relationship allows the retrieval of leaf chlorophyll by satellite data, based on the spectral information. Both of the proposed methods are almost independent of the observation angles employed. The high number of in situ measurements acquired simultaneously to satellite overpasses, and the broad available range of data, have allowed validation of both methods, with a large number of data and in a statistically consistent manner.  相似文献   

20.
基于时序定量遥感的冬小麦长势监测与估产研究   总被引:1,自引:1,他引:1       下载免费PDF全文
遥感技术是高效、客观监测农作物生长状态的重要手段,对农业生产管理具有重要意义。以安徽龙亢农场为研究区,收集了中高分辨率多源卫星遥感数据并进行了定量化处理,构建了冬小麦叶绿素密度、叶面积指数的遥感反演模型,生产了长时序冬小麦植被参数卫星遥感产品。通过监测冬小麦叶绿素密度、叶面积指数的时序变化规律,分析了不同品种冬小麦的长势情况,发现高产量小麦在越冬期长势显著优于低产量小麦。在此基础上,构建了基于归一化植被指数(NDVI)的冬小麦估产模型,结果表明:利用小麦抽穗期和乳熟期的累计NDVI值可以实现产量的精确估算,据此绘制了龙亢农场2017年冬小麦产量遥感估算地图,产量分布与实际种植情况吻合良好。实现了基于时序卫星定量遥感数据的冬小麦长势监测和产量预测,为区域范围内农作物长势监测提供了一种有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号