首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A case study including the discrimination of traffic accidents as accident free and accident cases on Konya-Afyonkarahisar highway in Turkey using the proposed hybrid method based on combining of a new data preprocessing method called subtractive clustering attribute weighting (SCAW) and classifier algorithms with the help of Geographical Information System (GIS) technology has been conducted. In order to improve the discrimination of classifier algorithms including artificial neural network (ANN), adaptive network based fuzzy inference system (ANFIS), support vector machine, and decision tree, using data preprocessing need in solution of these kinds of problems (traffic accident case study). So, we have proposed a novel data preprocessing method called subtractive clustering attribute weighting (SCAW) and combined with classifier algorithms. In this study, the experimental data has been obtained by means of using GIS. The obtained GIS attributes are day, temperature, humidity, weather conditions, and month of occurred accident. To evaluate the performance of the proposed hybrid method, the classification accuracy, sensitivity and specificity values have been used. The experimental obtained results are 53.93%, 52.25%, and 38.76% classification successes using alone ANN, ANFIS, and SVM with RBF kernel type, respectively. As for the proposed hybrid method, the classification accuracies of 67.98%, 70.22%, and 61.24% have been obtained using the combination of SCAW with ANN, the combination of SCAW with SVM (radial basis function (RBF) kernel type), and the combination of SCAW with ANFIS, respectively. The proposed SCAW method with the combination of classifier algorithms has been achieved the very promising results in the discrimination of traffic accidents.  相似文献   

2.
Land-cover mapping is an important research topic with broad applicability in the remote-sensing domain. Machine learning algorithms such as Maximum Likelihood Classifier (MLC), Support Vector Machine (SVM), Artificial Neural Network (ANN), and Random Forest (RF) have been playing an important role in this field for many years, although deep neural networks are experiencing a resurgence of interest. In this article, we demonstrate early efforts to apply deep learning-based classification methods to large-scale land-cover mapping. Based on the Stacked Autoencoder (SAE), one of the deep learning models, we built a classification framework for large-scale remote-sensing image processing. We adjusted and optimized the model parameters based on our test samples. We compared the performance of the SAE-based approach with traditional classification algorithms including RF, SVM, and ANN with multiple performance analytics. Results show that the SAE classifier trained with an entire set of African training samples achieves an overall classification accuracy of 78.99% when assessed by test samples collected independently of training samples, which is higher than the accuracies achieved by the other three classifiers (76.03%, 77.74%, and 77.86% of RF, SVM, and ANN, respectively) based on the same set of test samples. We also demonstrated the advantages of SAE in prediction time and land-cover mapping results in this study.  相似文献   

3.
以长白山为试验区,选择CHRIS/PROBA高光谱零度角遥感数据,在对其进行预处理的基础上,通过应用最大似然法(MLC)、最小距离法、支持向量机法(SVM)和光谱角填图法(SAM)等几种常用的高光谱遥感分类方法对影像进行森林类型分类。利用混淆矩阵对分类结果进行验证,结果显示:在高光谱遥感森林类型分类中,SVM总体分类精度最高,为84.60%;其次是MLC,为 83.53%,最小距离法73.81%,SAM 56.49%。Kappa系数从高到底为:SVM 0.78,MLC 0.77,最小距离法0.68,SAM 0.52。经过比较分析,得出SVM分类方法精度最高,这表明该方法用于高光谱遥感森林分类中的实用性和优越性。  相似文献   

4.
Sentinel-1A synthetic aperture radar (SAR) data present an opportunity for acquiring crop information without restrictions caused by weather and illumination conditions, at a spatial resolution appropriate for individual rice fields and a temporal resolution sufficient to capture the growth profiles of different crop species. This study investigated the use of multi-temporal Sentinel-1A SAR data and Landsat-derived normalized difference vegetation index (NDVI) data to map the spatial distribution of paddy rice fields across parts of the Sanjiang plain, in northeast China. The satellite sensor data were acquired throughout the rice crop-growing season (May–October). A co-registered set of 10 dual polarization (VH/VV) SAR and NDVI images depicting crop phenological development were used as inputs to Support Vector Machine (SVM) and Random Forest (RF) machine learning classification algorithms in order to map paddy rice fields. The results showed a significant increase in overall classification when the NDVI time-series data were integrated with the various combinations of multi-temporal polarization channels (i.e. VH, VV, and VH/VV). The highest classification accuracies overall (95.2%) and for paddy rice (96.7%) were generated using the RF algorithm applied to combined multi-temporal VH polarization and NDVI data. The SVM classifier was most effective when applied to the dual polarization (i.e. VH and VV) SAR data alone and this generated overall and paddy rice classification accuracies of 91.6% and 82.5%, respectively. The results demonstrate the practicality of implementing RF or SVM machine learning algorithms to produce 10 m spatial resolution maps of paddy rice fields with limited ground data using a combination of multi-temporal SAR and NDVI data, where available, or SAR data alone. The methodological framework developed in this study is apposite for large-scale implementation across China and other major rice-growing regions of the world.  相似文献   

5.
Cervical cancer is one of the leading causes of cancer death in females worldwide. The disease can be cured if the patient is diagnosed in the pre-cancerous lesion stage or earlier. A common physical examination technique widely used in the screening is Papanicolaou test or Pap test. In this research, a method for automatic cervical cancer cell segmentation and classification is proposed. A single-cell image is segmented into nucleus, cytoplasm, and background, using the fuzzy C-means (FCM) clustering technique. Four cell classes in the ERUDIT and LCH datasets, i.e., normal, low grade squamous intraepithelial lesion (LSIL), high grade squamous intraepithelial lesion (HSIL), and squamous cell carcinoma (SCC), are considered. The 2-class problem can be achieved by grouping the last 3 classes as one abnormal class. Whereas, the Herlev dataset consists of 7 cell classes, i.e., superficial squamous, intermediate squamous, columnar, mild dysplasia, moderate dysplasia, severe dysplasia, and carcinoma in situ. These 7 classes can also be grouped to form a 2-class problem. These 3 datasets were tested on 5 classifiers including Bayesian classifier, linear discriminant analysis (LDA), K-nearest neighbor (KNN), artificial neural networks (ANN), and support vector machine (SVM). For the ERUDIT dataset, ANN with 5 nucleus-based features yielded the accuracies of 96.20% and 97.83% on the 4-class and 2-class problems, respectively. For the Herlev dataset, ANN with 9 cell-based features yielded the accuracies of 93.78% and 99.27% for the 7-class and 2-class problems, respectively. For the LCH dataset, ANN with 9 cell-based features yielded the accuracies of 95.00% and 97.00% for the 4-class and 2-class problems, respectively. The segmentation and classification performances of the proposed method were compared with that of the hard C-means clustering and watershed technique. The results show that the proposed automatic approach yields very good performance and is better than its counterparts.  相似文献   

6.
Electronic nose (E-nose) technique was attempted to discriminate green tea quality instead of human panel test in this work. Four grades of green tea, which were classified by the human panel test, were attempted in the experiment. First, the E-nose system with eight metal oxide semiconductors gas sensors array was developed for data acquisition; then, the characteristic variables were extracted from the responses of the sensors; next, the principal components (PCs), as the input of the discrimination model, were extracted by principal component analysis (PCA); finally, three different linear or nonlinear classification tools, which were K-nearest neighbors (KNN), artificial neural network (ANN) and support vector machine (SVM), were compared in developing the discrimination model. The number of PCs and other model parameters were optimized by cross-validation. Experimental results showed that the performance of SVM model was superior to other models. The optimum SVM model was achieved when 4 PCs were included. The back discrimination rate was equal to 100% in the training set, and predictive discrimination rate was equal to 95% in the prediction set, respectively. The overall results demonstrated that E-nose technique with SVM classification tool could be successfully used in discrimination of green tea's quality, and SVM algorithm shows its superiority in solution to classification of green tea's quality using E-nose data.  相似文献   

7.
Heart failure is now widely spread throughout the world. Heart disease affects approximately 48% of the population. It is too expensive and also difficult to cure the disease. This research paper represents machine learning models to predict heart failure. The fundamental concept is to compare the correctness of various Machine Learning (ML) algorithms and boost algorithms to improve models’ accuracy for prediction. Some supervised algorithms like K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), Logistic Regression (LR) are considered to achieve the best results. Some boosting algorithms like Extreme Gradient Boosting (XGBoost) and CatBoost are also used to improve the prediction using Artificial Neural Networks (ANN). This research also focuses on data visualization to identify patterns, trends, and outliers in a massive data set. Python and Scikit-learns are used for ML. Tensor Flow and Keras, along with Python, are used for ANN model training. The DT and RF algorithms achieved the highest accuracy of 95% among the classifiers. Meanwhile, KNN obtained a second height accuracy of 93.33%. XGBoost had a gratified accuracy of 91.67%, SVM, CATBoost, and ANN had an accuracy of 90%, and LR had 88.33% accuracy.  相似文献   

8.
Many organisms rely on reedbed habitats for their existence, yet, over the past century there has been a drastic reduction in the area and quality of reedbeds in the UK due to intensified human activities. In order to develop management plans for conserving and expanding this threatened habitat, accurate up-to-date information is needed concerning its current distribution and status. This information is difficult to collect using field surveys because reedbeds exist as small patches that are sparsely distributed across landscapes. Hence, this study was undertaken to develop a methodology for accurately mapping reedbeds using very high resolution QuickBird satellite imagery. The objectives were to determine the optimum combination of textural and spectral measures for mapping reedbeds; to investigate the effect of the spatial resolution of the input data upon classification accuracy; to determine whether the maximum likelihood classifier (MLC) or artificial neural network (ANN) analysis produced the most accurate classification; and to investigate the potential of refining the reedbed classification using slope suitability filters produced from digital terrain data. The results indicate an increase in the accuracy of reedbed delineations when grey-level co-occurrence textural measures were combined with the spectral bands. The most effective combination of texture measures were entropy and angular second moment. Optimal reedbed and overall classification accuracies were achieved using a combination of pansharpened multispectral and texture images that had been spatially degraded from 0.6 to 4.8 m. Using the 4.8 m data set, the MLC produced higher classification accuracy for reedbeds than the ANN analysis. The application of slope suitability filters increased the classification accuracy of reedbeds from 71% to 79%. Hence, this study has demonstrated that it is possible to use high resolution multispectral satellite imagery to derive accurate maps of reedbeds through appropriate analysis of image texture, judicious selection of input bands, spatial resolution and classification algorithm and post-classification refinement using terrain data.  相似文献   

9.
Activity recognition in monitored environments where the occupants are elderly or disabled is currently a popular research topic, with current systems implementing ubiquitous sensing or video surveillance techniques. Using disaggregated data from smart meters could be a viable alternative to what is often perceived as intrusive recognition technology. Disaggregation methods have proven to perform exceptionally well when trained with large quantities of data, but gathering and labelling this data is, in itself, an intrusive process that requires significant effort and could compromise the practicality of such promising systems. Here we show that by synthesising labelled training data, using a domain specific algorithm, an innovative water meter disaggregation system that uses Artificial Neural Networks (ANN), Support Vector Machine (SVM) and K-Nearest Neighbour (KNN) classifiers can be trained in minutes rather than hours. We show that by artificially synthesising labelled data accuracies of 83%, 79% and 85% with the SVM, ANN and KNN classifiers, respectively can be achieved. Though these values are marginally lower than 89%, 83% and 89% achieved with no synthesis, the measure of accuracy masks the underlying imbalance of representative classes in the data set.  相似文献   

10.
This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote-sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images and different classification algorithms, maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA) and object-based classification (OBC), were explored. The results indicate that a combination of vegetation indices as extra bands into Landsat TM multi-spectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multi-spectral bands improved the overall classification accuracy (OCA) by 5.6% and the overall kappa coefficient (OKC) by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes that have complex stand structures and large patch sizes.  相似文献   

11.
This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms - maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes.  相似文献   

12.
Mangrove habitat is one of the most highly productive ecosystems. The distribution of mangrove species acts as an inventory to formulate conservation management plans. This study explored the potential of combining hyperspectral (Earth-observing (EO)-1 Hyperion) and multi-temporal synthetic aperture radar (SAR) (Environmental Satellite (Envisat) ASAR) data, supported by in situ field surveys, to map mangrove species. Hyperspectral imaging captures a number of narrow contiguous spectral bands providing richer spectral details than those obtained from traditional broadband sensors. All-weather radar sensing allows continuous data acquisition and its signal penetrability can reveal canopy structural characteristics, which offer an additional data dimension that is not available in optical sensing. Through combining the two data types, this study achieved three objectives. First, facing the issue of dimensionality and limited field samples, feature selection techniques from computer science were adopted to select spectral and radar features that are crucial for mangrove species discrimination. Second, classification accuracy using various combinations of spectral and radar features was evaluated. Third, classification algorithms including maximum likelihood (ML), decision tree (DT), artificial neural network (ANN), and support vector machine (SVM) were used to estimate species distribution, and classification accuracy was compared. Results suggested that feature selection techniques are capable of identifying salient features in spectral and radar space that can effectively discriminate between mangrove species. Combining optical and radar data can improve classification accuracy. Among the classifiers, ANN produces more accurate and robust estimation.  相似文献   

13.
SVM在文本分类中的应用是近年来文本分类领域重要的进展之一。许多实验表明,SVM在文本分类中比其他的机器学习算法表现出更高的分类精度,但在大规模数据上的收敛速度较慢,成为SVM在实际应用中的一大缺点。球向量机是一种比SVM更快的机器学习方法。本文将BVM应用于文本分类。实验表明,BVM在文本分类中的应用具有与SVM相当的精 度,而且比SVM有更少的训练时间。  相似文献   

14.
The preparation of control data is a primary concern in many supervised classification schemes. In coral reef mapping, this issue becomes more severe for three reasons: (1) control samples, located beneath the water, are quite difficult and costly to access; (2) because of the high spatial variability of coral reef habitats, it is very difficult to obtain high-quality samples; and (3) pure training samples are also hardly achievable. These issues, namely quantity, quality, and impurity challenges, are the main focus of this study. Three classification algorithms, including Maximum Likelihood Classifier (MLC), Artificial Neural Networks (ANNs), and Support Vector Machines (SVMs), are comprehensively evaluated, and their requirements for control data are determined. To accomplish this, rich field data, collected from diving off of Lizard Island in eastern Australia, and Landsat-8 images are used as the input data. With respect to accuracy, ANN is best, as it can deal with the complexity of coral reef environments; however, it requires a higher number of training samples (i.e. ANN cannot manage the quantity challenge). On the other hand, SVM shows the best resistance against the quantity and impurity challenges. Being aware of these points, a coral reef map is produced, for the first time, of the northern Persian Gulf, a coral habitat with very special environmental conditions. In this region, SVM achieved 68.42% overall accuracy, even though a very limited field work campaign was conducted to provide the control data.  相似文献   

15.
Hyperspectral and thermal infrared (TIR) multispectral remote sensing have great potential for surface geological mapping. This paper investigates the potential impact of combining these data on the comparative accuracy of different classification methods. A series of simulated datasets based on the characteristics of Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) and MODIS/ASTER Airborne Simulator (MASTER) sensors was created from surface reflectance and emissivity data derived from library spectra of 16 common minerals and rocks occurring in Cuprite, Nevada. System noise, illumination effects, the presence of vegetation, and spectral mixing were added to create the simulated data. Five commonly used classification algorithms, minimum distance, maximum likelihood classification, binary encoding, spectral angle mapper (SAM) and spectral feature fitting (SFF), were applied to all datasets. All the classification methods, excluding binary encoding, achieved nominal to significant improvement in overall accuracy when applied to the combined datasets in comparison to using only the AVIRIS dataset. Furthermore, certain classification methods of the combined datasets show a marked increase in individual rock or mineral class accuracies. Limestone, silicified and muscovite, for instance, show an improvement of almost 30% or greater in either producer's or user's accuracy using the combined datasets with SAM. SFF provides a great improvement in accuracy for limestone, quartz and muscovite. In terms of overall comparative accuracy for the individual and the combined datasets, maximum likelihood classification shows the best performance. For the simulated AVIRIS data, SFF was generally superior to SAM, although the accuracy of SAM applied to the combined datasets was slightly better than that of SFF. SAM applied to the combined datasets increases classification accuracy for some minerals and rocks which do not exhibit distinct absorption feature in the TIR region, while for SFF, only the accuracy of minerals and rocks with characteristic absorption features in the TIR region is improved.  相似文献   

16.
The objective of this experimentation is to develop an interactive CAD system for assisting radiologists in multiclass brain tumor classification. The study is performed on a diversified dataset of 428 post contrast T1-weighted MR images of 55 patients and publically available dataset of 260 post contrast T1-weighted MR images of 10 patients. The first dataset includes primary brain tumors such as Astrocytoma (AS), Glioblastoma Multiforme (GBM), childhood tumor-Medulloblastoma (MED) and Meningioma (MEN), along with secondary tumor-Metastatic (MET). The second dataset consists of Astrocytoma (AS), Low Grade Glioma (LGL) and Meningioma (MEN). The tumor regions are marked by content based active contour (CBAC) model. The regions are than saved as segmented regions of interest (SROIs). 71 intensity and texture feature set is extracted from these SROIs. The features are specifically selected based on the pathological details of brain tumors provided by the radiologist. Genetic Algorithm (GA) selects the set of optimal features from this input set. Two hybrid machine learning models are implemented using GA with support vector machine (SVM) and artificial neural network (ANN) (GA-SVM and GA-ANN) and are tested on two different datasets. GA-SVM is proposed for finding preliminary probability in identifying tumor class and GA-ANN is used for confirmation of accuracy. Test results of the first dataset show that the GA optimization technique has enhanced the overall accuracy of SVM from 79.3% to 91.7% and of ANN from 75.6% to 94.9%. Individual class accuracies delivered by GA-SVM are: AS-89.8%, GBM-83.3%, MED-95.6%, MEN-91.8%, and MET-97.1%. Individual class accuracies delivered by GA-ANN classifier are: AS-96.6%, GBM-86.6%, MED-93.3%, MEN-96%, MET-100%. Similar results are obtained for the second dataset. The overall accuracy of SVM has increased from 80.8% to 89% and that of ANN has increased from 77.5% to 94.1%. Individual class accuracies delivered by GA-SVM are: AS-85.3%, LGL-88.8%, MEN-93%. Individual class accuracies delivered by GA-ANN classifier are: AS-92.6%, LGL-94.4%, MED-95.3%. It is observed from the experiments that GA-ANN classifier has provided better results than GA-SVM. Further, it is observed that along with providing finer results, GA-SVM provides advantage in speed whereas GA-ANN provides advantage in accuracy. The combined results from both the classifiers will benefit the radiologists in forming a better decision for classifying brain tumors.  相似文献   

17.
训练样本量、辅助数据和分类法是影响土地利用/覆盖分类精度的3个主要因素,通过找到这3个因素的最佳组合方式以提高分类精度,分别在25%、50%、75%、100%样本量下,加入NDVI、DEM和纹理均值特征作为辅助数据,比较了分类回归树、支持向量机、最大似然法3种分类法的效果,探讨了训练样本、辅助数据以及分类技术对土地利用/覆盖分类精度的影响。结果表明:支持向量机总体分类精度较高,在相同样本量和没有有效辅助数据的情况下,SVM可以获得最佳的分类结果,总体分类精度在85%以上;在进行分类时,加入NDVI和纹理均值特征使分类回归树分类精度提高了2.82%,说明该方法对有效辅助数据的加入较为敏感;在获取的训练样本集有限而可获取有效的辅助数据时,应优先考虑利用分类回归树进行土地利用/覆盖分类。  相似文献   

18.

The present study reports classification and analysis of composite land features using fusion images obtained by fusing two original hyperspectral and multispectral datasets. The high spatial-spectral resolution, multi-instrument and multi-period satellite images were used for fusion. Three pixel level fusion based techniques, Color Normalized Spectral Sharpening (CNSS), Principal Component Spectral Sharpening Transform (PCSST) and Gram-Schmidt Transform (GST), were implemented on the datasets. Performance evaluations of three fusion algorithms were done using classification results. The Support Vector Machine (SVM) and Gaussian Maximum Likelihood Classification (MLC) were used for classification using five types of images, viz. hyperspectral, multispectral and three fused images. Number of classes considered was eight. Sufficient number of ground field data for each class has also been acquired which was needed for supervise based classification. The accuracy was improved from 74.44 to 97.65% when the fused images were considered with SVM classifier. Similarly, the results were improved from 69.25 to 94.61% with original and fused data using MLC classifier. The fusion image technique was found to be superior to the single original image and the SVM is better than the MLC method.

  相似文献   

19.
《遥感信息》2009,28(1):77-82
环境减灾星星座A星(HJ 1A)携带的超光谱仪填补了我国星载高光谱影像采集领域的空白,但目前国内关于该高光谱数据的应用较少。本文基于HJ 1A高光谱(HSI)数据预处理技术,以申扎县北部为研究区,采用SPCA MLC和HSI SAM分类方法,结合野外实测样本,将研究区分为沼泽草甸、高寒草甸、高寒草原、荒漠化草原和裸地5种类型,并结合分类精度和分类图对2种分类方法进行了对比分析,可得基于HJ 1A高光谱数据的藏北高原草地分类方法中SPCA MLC法优于HSI SAM法。2种方法的分类精度皆大于80%,证明了HJ 1A的HSI数据在实现藏北草地高精度分类方面的巨大潜力。  相似文献   

20.
Previous research has shown that integrating hyperspectral visible and near-infrared (VNIR) / short-wave infrared (SWIR) with multispectral thermal infrared (TIR) data can lead to improved mineral and rock identification. However, inconsistent results were found regarding the relative accuracies of different classification methods for dealing with the integrated data set. In this study, a rule-based system was developed for integration of VNIR/SWIR hyperspectral data with TIR multispectral data and evaluated using a case study of Cuprite, Nevada. Previous geological mapping, supplemented by field work and sample spectral measurements, was used to develop a generalized knowledge base for analysis of both spectral reflectance and spectral emissivity. The characteristic absorption features, albedo and the location of the spectral emissivity minimum were used to construct the decision rules. A continuum removal algorithm was used to identify absorption features from VNIR/SWIR hyperspectral data only; spectral angle mapper (SAM) and spectral feature fitting (SFF) algorithms were used to estimate the most likely rock type. The rule-based system was found to achieve a notably higher performance than the SAM, SFF, minimum distance and maximum likelihood classification methods on their own.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号