共查询到17条相似文献,搜索用时 140 毫秒
1.
针对基于红外光谱的CO气体定量分析模型对机动车尾气排放中有害气体CO的定量分析;选取了浓度范围在0.5%~20%的15组不同浓度的CO气体样本,建立CO浓度的支持向量机( SVM)回归分析模型,基于改进的网格搜索法对SVM的相关参数进行了优化。实验结果表明:经过SVM的回归分析,与传统的光谱吸收方法相比,处理后浓度值比实验所得浓度值更接近CO标定值;与粒子群优化( PSO)算法作对比,采用网格搜索法获得的最佳参数糟=0.707,早=0.5,PSO获得的糟=55.911,早=0.01,所用时间比PSO算法节省约40%。SVM应用于CO的浓度分析,符合实验要求,回归效率提高。 相似文献
2.
基于网格模式搜索的支持向量机模型选择 总被引:2,自引:0,他引:2
支持向量机的模型选择问题就是对于一个给定的核函数,调节核参数和惩罚因子C。分析了网格搜索算法和模式搜索算法,通过结合上述两种算法的优点提出了网格模式搜索算法。其核心原理是先用网格算法在全局范围内进行快速搜索,找到最优解的最小区间,再在这个最小区间内用模式搜索算法找到最优解。实验证明,网格模式搜索具有学习精度高和速度快的优点。 相似文献
3.
为了降低电子鼻对混合气体定量分析的误差,消除气体传感器阵列的交叉敏感特性,文章提出了一种在电子鼻中运用支持向量机进行模式分析的方法。用支持向量机对丁烷和乙醇混合气体所测得的原始数据进行处理,并将其与BP神经网络方法对比。结果表明,该方法预测精度高于传统的BP神经网络,在训练速度上也比BP网络神经更快,能有效地完成混合气体组分的定量分析。 相似文献
4.
网络流量预测在网络运行管理中具有重要作用.为提高预测准确性和可靠性,采用网格搜索法寻求支持向量机的最优平衡参数和核函数参数并在此基础上建立预测模型,以许昌学院校园网2010年9月30日至2011年10月9日的网络流量为实例测试预测效果.研究结果表明,基于网格搜索支持向量机预测法的预测结果能准确地反映网络流量的变化趋势且具有较好的预测精度,验证了其在网络流量预测中的可行性. 相似文献
5.
6.
7.
应用支持向量机对心脏病患者和非心脏病患者的分类进行研究,构建心脏病预测模型,辅助医生进行心脏病诊断.选用径向基核函数构造支持向量机分类器,利用网格搜索与交叉验证相结合的方法对模型进行初步的优化,缩小参数寻优的取值范围,在此基础上使用粒子群优化算法(PSO)对模型进行进一步优化,得到模型最佳的惩罚因子C和核参数g.将优化... 相似文献
8.
以符合Lambert-Beer定律的光谱信息为研究对象,建立了基于支持向量机的光谱混合气体组分分析模型,并对分析模型进行了实验:模拟混合气体的光谱信息,配制了18个组分浓度不同的样本,其中9个样本作为训练集,另外9个样本作为检验集。实验表明,支持向量机的预测结果要优于神经网络的预测结果。 相似文献
9.
针对传统浊度传感器的非线性误差,无法满足直接对水中浊度进行精确测量的需求,提出了一种支持向量机的方法补偿其性能。而支持向量机中惩罚系数和核参数决定了其补偿的性能,传统支持向量机寻参方法速度慢、运算量大,具有一定的局限性。针对其参数的选择优化提出了改进的网格搜索法优化支持向量机,即采用改进的网格搜索法来针对水质浊度监测传感器补偿系统的特性来优化选择惩罚系数和核参数。实验结果表明,基于网格搜索法的支持向量机测量精度达到93.0%,其各项测量误差满足实际标准要求。 相似文献
10.
高光谱遥感技术,将反映目标辐射属性的光谱信息与反映目标空间几何关系的图像信息有机地结合在一起.高光谱影像丰富的光谱信息使其较全色遥感、多光谱遥感能够更好的进行地面目标的分类识别.本文综合利用支持向量机分类的若干关键技术,包括序列最小优化训练算法,多类支持向量机构造方法、核函数及其参数选择的交叉验证"网格搜索",给出了高光谱影像分类流程,进行了遥感数据试验分析. 相似文献
11.
针对混合气体定量分析中,支持向量机建模的参数难以确定、红外光谱数据计算量过大以及气体间交叉干扰等问题。提出了一种自适应变异粒子群优化的支持向量机方法,用于建立基于红外光谱的多组分混合气体定量分析模型。混合气体主要由浓度范围在0.5%~8%的CO、3.6%~12.5%的CO2及200×10-6~3270×10-6的C3H8三种组分气体组成。利用粒子群优化算法对支持向量机建模中的参数进行优化选择,并与遗传算法优化的支持向量机作对比。实验表明,采用此方法建模所用时间为39.524 s,遗传算法为26.272 s;针对CO2独立建模的预测结果,粒子群优化算法均方差为0.000123758,遗传算法均方差为2.14952。在建模时间略高的情况下,粒子群优化算法预测结果均方差明显低于遗传算法。 相似文献
12.
针对机动车尾气排放CO气体的定量分析中,支持向量机建模的参数难以确定、光谱数据计算量过大等问题,提出了一种自适应变异粒子群优化的支持向量机方法,对浓度范围在0.5%~8%的20组不同浓度的CO气体进行定量分析。通过对汽车尾气中CO气体的初始数据进行优化,再将优化的核函数带入支持向量机进行浓度的回归分析,将结果与BP神经网络模型回归效果作对比,实验表明:粒子群寻优得到的最优参数c=39.3152,g=0.17855;BP神经网络的适应度值在迭代60次之后趋于稳定,SVM建模时间约为BP网络的1/30,且SVM预测精度明显高于BP网络。相比与BP网络,SVM更适合处理气体定量分析问题。 相似文献
13.
提出了采用小波分析和最小二乘支持向量机(LS-SVM)混合模型对网格负载信息进行预测。该模型首先基于小波多分辨率分析对非平稳的网格负载样本做序列分解,得到不同尺度下的负载分量,然后利用LS-SVM对不同尺度的分量进行预测,最后通过对各分量预测信息进行重构得到相应的预测值。实验结果表明,使用本模型进行短期负荷预测比传统小波神经网络方法可以获得更好的预测精度。 相似文献
14.
为了进一步提高支持向量机分类的准确性和泛化能力,提出一种基于支持向量机的改进二叉树分类算法.首先介绍支持向量机的基本原理,总结了常见的多分类器分类算法及其特点,结合现有分类算法的优点,为分类器引入了不同的权值,提出二叉树改进分类算法,有效避免了常用分类算法不足.通过仿真实验,与典型的多类分类算法对比,验证该算法的有效性,为多类分类预测研究提供了一条有效的途径. 相似文献
15.
支持向量机是一种比较新的机器学习方法,它满足结构风险最小的要求,并且能够适用于高维的特征空间,因此在生物序列分析中得到了广泛地应用。结合基因序列的特点,提出了一种新的核函数--位置权重子序列核函数。这个核函数融合了基因序列中子序列的组成特征和位置信息,能够比较充分地体现序列特征。将这个核函数用于基因剪接位点的识别分析,得到的结果表明,采用了位置权重子序列核函数的支持向量机能够很好的识别剪接位点,与其它方法相比,取得了更高的识别精度。 相似文献
16.
17.
支持向量机在解决小样本、非线性及高维模式识别问题中具有许多特有的优势,但支持向量的选择过程复杂。该文利用聚类技术的特殊性能,提出基于搜索机制的密度聚类算法,该算法通过一种简单的搜索策略可将密度高于一定限度的对象聚为一类。将该算法用于支持向量的预选取,可减少训练样本数目,提高支持向量机的训练速度。从仿真实验可以看出,通过基于搜索机制密度聚类的支持向量预选取,训练样本数目可减少2/3以上,线性可分的数据训练速度可加快12倍左右,非线性可分的数据训练速度可加快5倍左右。 相似文献