首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
李大禹 《液晶与显示》2016,31(5):491-496
为了满足4 m天文望远镜液晶自适应光学系统的波前处理要求,研究了基于多GPU的波前处理器。介绍了液晶自适应光学波前处理方法。分析了用于匹配4 m望远镜的哈特曼探测器数目、Zernike模式数和液晶校正器驱动单元数。详细论述了多GPU下波前处理方法,包括:单GPU下计算斜率;按列分块法拟合Zernike系数;Zernike对称性算法和按行分块法计算液晶校正器灰度图。最后,分析了匹配4 m望远镜的液晶自适应光学系统的残余误差传递函数,并由此模拟了残余误差传递函数的幅频响应。实验结果表明,斜率计算延迟18 μs,Zernike系数拟合延迟39 μs,校正器灰度图计算延迟114 μs。多GPU下总的波前处理延迟171 μs,小于哈特曼探测器采样时间500 μs,液晶自适应光学系统-3 dB残余误差抑制带宽可达53 Hz。满足4 m天文望远镜的应用要求。  相似文献   

2.
提出了一种基于GPU 的液晶大气湍流模拟器实时波面生成的计算方法,为了让液晶空间光调制器进行大气湍流类比。依据液晶湍流模拟器高分辨率、高精度的特性讨论CUDA 的算法。此外,建立一种基于GPU 波面生成的模型并进一步对其优化。最后给出使用CPU 和GPU 后的结果并进行类比。结果表明:采用231 项Zernike 系数生成分辨率为256256 的波前所需时间少于2 ms,与传统的采用CPU 生成的方法相比速度提升两个量级,满足实时波面生成的要求。  相似文献   

3.
为了更好的利用液晶自适应成像系统进行具有较大屈光不正人眼像差校正及视网膜的成像,建立了一套基于低阶像差自补偿的眼底自适应成像系统。该系统采用基于人眼调节特性的光学系统进行屈光补偿,用夏克哈特曼波前传感器进行实时的波面探测,将探测所得波前畸变进行波前重构,通过LCOS波前校正器进行高阶像差的波面校正提高系统成像质量。经过校正后系统波前误差得到有效控制。光学系统的分辨率接近70 lp/mm,已经到达该光学系统的衍射极限分辨。可以得出:液晶自适应视网膜成像系统可以满足高度屈光不正情况下的人眼视网膜成像要求。  相似文献   

4.
张阳  何宇龙  宁禹  孙全  李俊  许晓军 《红外与激光工程》2021,50(8):20200363-1-20200363-10
自适应光学系统中,波前传感器的准确性和鲁棒性极大地影响像差探测能力和闭环校正效果。在波前振幅分布不均匀或信标光能量不足的情况下,哈特曼波前传感器由于存在子孔径缺光现象会导致传感精度下降,而基于远场光斑反演波前相位的无波前传感自适应系统实时性难以满足实用需求。基于深度学习复原波前的方法是通过输入远场光强图像直接求取像差,可以作为自适应光学系统的有效补充。文中通过数值模拟,证明了深度残差神经网络能够通过远场光斑直接预测波前相位的Zernike系数。实验验证了输入与重构波前相位之间校正后残差RMS为0.08λ,GPU加速后的平均计算耗时小于2 ms。该方法能较准确地预测入射波前畸变的Zernike系数,具有一定像差校正能力,适合在传统自适应光学技术中,用于测量并校正波前畸变的主要成分,或为优化式自适应光学提供良好的初始波前估计。  相似文献   

5.
分析了将GPU并行计算技术用于通用计算的可行性,简要介绍CUDA架构编程,并以一个应用实例对GPU并行计算的性能进行了验证,测试表明GPU加速通用计算的优良性能,最后总结了GPU并行计算技术的运用模式。  相似文献   

6.
液晶波前校正器位相调制非线性及闭环校正研究   总被引:1,自引:4,他引:1  
研究了液晶波前校正器位相调制曲线非线性的校正以及液晶自适应闭环对畸变波前的校正.利用液晶显示器领域通用的Gamma校正技术实现对液晶波前校正器非线性的校正.首先,通过施加线性的LUT曲线以获得512个LUT值对应的位相调制量.然后通过对一个波长位相调制量的线性化分割,找到能够获得线性位相调制的LUT函数曲线.最后将该优化曲线写入液晶波前校正器的驱动电路板中,再次驱动液晶波前校正器并利用ZY-GO干涉仪测量位相调制和灰度级的关系,得到了线性的位相调制.利用线性的液晶波前校正器结合哈特曼波前探测器和波前控制器进行了自适应闭环校正研究.校正前,PV和RMS的平均值分别为2.5牒.48耄痪栈纷允视πU琍V和RMS的平均值分别下降为和.分辨率板的一级像也由模糊变得清晰.实验结果说明,经过线性化的液晶波前校正器可以获得高校正精度.  相似文献   

7.
刘昊 《电子质量》2010,(12):1-4
随着GPU的发展,其计算能力和访存带宽都超过了CPU,在GPU上进行通用计算具有成本低、性能高的特点。细胞神经网络由于其特有的性质,非常适合利用GPU进行并行计算,因此,该文提出了利用CU-DA实现的基于GPU的细胞神经网络异构算法,并应用在图像边缘检测上。实验结果证明,与传统的利用CPU实现的边缘检测方法相比,在速度上,基于GPU实现的图像边缘检测方法提高了数十倍,为细胞神经网络在实时图像、视频处理上的应用提供了新的方法。  相似文献   

8.
李军辉 《激光与红外》2023,53(3):474-480
为实现对光束近场强度分布不均匀或低信噪比场景中的高精度波前测量,分析了低信噪比情况下,在基于夏克-哈特曼波前传感器的自适应光学系统中,分别使用基于归一化互相关因子的相关算法与目前常用的自适应阈值灰度质心法时,信噪比对质心探测精度及后续波前复原精度的影响。通过数值仿真与实验对比,证明了基于归一化互相关因子的相关算法在不同光强条件下的波前测量结果一致性与准确性都高于自适应阈值的灰度质心法,其可为自适应光学系统在像差探测能力上提供更高的准确性与鲁棒性。针对基于归一化互相关因子的相关算法计算量较大,软件计算实时性较差,难以满足工程实用需要的问题,提出了一种基于算法实现优化与多级并行计算的加速方法,对448单元子孔径的夏克-哈特曼波前传感器可实现每秒上千赫兹的计算速度,可满足大部分自适应光学系统波前探测实时性的工程需要。  相似文献   

9.
液晶波前校正器校正水平方向上的大气湍流   总被引:3,自引:3,他引:0  
利用液晶波前校正器和哈特曼波前传感器组成的自适应光学系统对水平方向500 m的大气湍流进行校正.首先测定了液晶波前校正器(LCWFC)的位相调制特性,测定结果表明其可以实现一个波长的调制量,同时利用Garoma校正实现了位相和灰度之间的线性调制关系.然后将该系统与孔径220 mm的望远镜进行对接.液晶自适应校正后,波面均方根误差降低到0.06λ,实现了0.68"的系统衍射极限分辨.实验结果表明:液晶波前校正器可以很好地校正水平方向500 m的大气湍流扰动.  相似文献   

10.
对于自适应光学系统,液晶波前校正器是一个非常有前景的波前校正器件。传统的向列相液晶波前校正器的主要缺点是偏振依赖和工作波段窄。采用了基于偏振分束器的开环光路设计和优化的能量分割方法来分别解决上述问题。结果显示,开环光路非常适合于液晶波前校正器,且新颖的能量分割方法显著提高了液晶自适应光学系统的探测能力。  相似文献   

11.
针对数字全息重建算法计算速度慢、实时应用能力弱以及现有GPU加速策略跨平台移植性差等问题,该文提出一种利用开放运算语言(OpenCL)架构提高数字全息重建算法执行效率的方案。该方案充分利用OpenCL架构的异构协同计算能力,对数字全息卷积重建算法进行CPU+GPU的异构运行设计,并采用数据并行模式编程实现。针对不同分辨率数字全息图、不同GPU加速平台的测试结果表明,该加速策略的平均执行时间均比CPU低1个数量级,最高总加速比达到54.2,并行运算加速比甚至高达94.7,且具有规模增长性及良好的跨平台特性,加速效率显著,更加适用于数字全息技术的工程化实现及实时性应用场合。  相似文献   

12.
针对目前地层层析成像算法中正演算法存在计算量大、计算速度慢的问题,以图像处理器(GPU)为核心,研究并实现了一种基于GPU平台的时域有限差分(FDTD)正演算法。CUDA是一种由NVIDIA推出的GPU通用并行计算架构,也是目前较为成熟的GPU并行运算架构。而FDTD正演算法本身在算法特性上满足并行的要求,二者的结合将极大地加速程序的计算速度。在基于标准Marmousi速度模型的正演模拟中,程序速度提升30倍,而GPU正演图像与CPU正演结果误差小于千分之一。算例表明CUDA可以大大加速目前的FDTD正演算法,并且随着GPU硬件自身的发展和计算架构的不断改进,加速效果还将进一步提升,这将有利于后续波形反演工作的进展。  相似文献   

13.
星图配准是星图处理应用中的一个重要步骤,因此星图配准的速度直接影响了星图处理的整体速度.近几年来,图形处理器(GPU)在通用计算领域得到快速的发展.结合GPU在通用计算领域的优势与星图配准面临的处理速度的问题,研究了基于GPU加速处理星图配准的算法.在已有配准算法的基础上,根据算法特点提出了相应的GPU并行设计模型,利用CUDA编程语言进行仿真实验.实验结果表明:相较于传统基于CPU的配准算法,基于GPU的并行设计模型同样达到了配准要求,且配准速度的加速比达到29.043倍.  相似文献   

14.
随着X线探测板数据采集速度的快速发展,研究者开始利用C臂机采集投影数据并重建断层图像,用于手术导航或者放射治疗.但是普通PC的重建速度慢,很难匹配硬件数据采集速度,限制了其在实时临床环境中的应用.本文提出一种基于CUDA(Compute Unified Device Architecture)架构的改进FDK算法,利用GPU(Graphic Porcessing Unit)显卡的并行计算能力实现了实时CT重建,并通过B样条插值提高重建图像的质量,在实时临床环境中具有很好的应用价值.  相似文献   

15.
To overcome the limitations of the existing brute force cracking method of Wi‐Fi Protected Access/Wi‐Fi Protected Access II (WPA/WPA2)‐pre‐shared key (PSK) based on single core CPU or one core of a multi‐core CPU, a new distributed multi‐core CPU and GPU parallel cracking method (DMCG) was first proposed. Colored Petri nets was used to validate the four‐way handshake protocol and proved that DMCG could successfully crack WPA/WPA2‐PSK. In DMCG, the PSK list was distributed to each PC reasonably using distributed technology. Multiple computing cores were made up of multi‐core CPU and GPU on single PC to crack in parallel. GPU contributed to the cracking speed improvement due to the strong computing power for intensive parallel tasks. Experimental results showed that DMCG improved the cracking speed by two orders of magnitude and would exhibit more notable advantages with high‐performance distributed system as the cracking speed improved by three or four orders of magnitude, compared with the computing power of one CPU core. An improved Amdahl's law was first proposed, by which the upper bound of the cracking speedup was analyzed. Aiming to the DMCG expansion of cloud computing based on GPU, a lightweight framework called Dandelion computing model was first proposed. Moreover, the analysis of the influences of the graphics card parameters on the cracking speed was processed, and accordingly, the decision support for choosing graphics card in DMCG based on analytic hierarchy process was provided. Finally, the performance optimization of DMCG was processed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
张聪  邢同举  罗颖  张静  孙强 《电子设计工程》2011,19(19):141-143,146
数学形态学运算是一种高度并行的运算,其计算量大而又如此广泛地应用于对实时性要求较高的诸多重要领域。为了提高数学形态学运算的速度,提出了一种基于CUDA架构的GPU并行数学形态学运算。文章详细描述了GPU硬件架构和CUDA编程模型,并给出了GPU腐蚀并行运算的详细实现过程以及编程过程中为充分利用GPU资源所需要注意的具体问题。实验结果表明,GPU并行数学形态学运算速度可达到几个数量级的提高。  相似文献   

17.
压缩感知是近几年出现的一种新型信号处理方法,它能够以远低于奈奎斯特采样速率进行采样,而且在采样的同时对信号进行了压缩。但它却是以解码端的复杂度为代价,复杂的重构算法对设备提出了较高的要求,此外,重构时间也限制了压缩感知在实际中的应用。利用GPU的强大运算能力,对现有算法进行优化的同时,在不同的并行环境下进行实验对比,将重构算法中复杂的矩阵操作模块转移到GPU上并行执行。实验结果表明,该算法可以有效地提高重构效率。  相似文献   

18.
协议特征识别技术中用到了一种重要的LCS算法,它是一种字符串比对算法,提取出字符串中的最长连续公共子串。然而,通过理论分析和实验表明:这个查找过程是一个时间复杂度较高的运算过程,如果输入的数据分组比较大,那么运行的时间将会非常长,为此不得不控制输入数据分组的大小和数量,这严重限制了所采用样本集的大小。提出了基于GPU对LCS运算实现加速的方法。在此基础上搭建和配置了CUDA平台,在此平台下研究并实现了LCS算法的并行性。通过对LCS算法在CUDA下并行性的研究,有效地加快了LCS算法的运行速度。实验结果表明,GPU下LCS算法的运行效率比CPU有了显著的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号