首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
掺杂对尖晶石锰酸锂正极材料的影响   总被引:4,自引:0,他引:4  
合成性能好、结构稳定的正极材料锰酸锂是研究和制备有应用前景的锂离子蓄电池电极材料的关键,锰酸锂是较有前景的锂离子正极材料之一。但其较差的循环性能及电化学稳定性却大大限制了其产业化,掺杂是提高其性能的一种有效方法。掺杂有强M-O键、较强八面体稳定性且离子半径与锰离子相近的金属离子,能显著改善其循环性能。综述了阳离子掺杂、阴离子掺杂以及复合掺杂对锂锰氧化物电化学性能的影响,其中主要介绍了铬、钴、铝、镍等元素的掺杂对锰酸锂的影响。  相似文献   

2.
锂离子电池正极材料锰酸锂的制备与改性研究   总被引:3,自引:0,他引:3  
锂离子电池是绿色高能可充电池,具有工作电压高、比能量大、自放电少、循环寿命长、无记忆效应、无环境污染等突出优点.尖晶石型锰酸锂正极材料具有无毒、成本低、电容量高等优点,近年来引起广泛关注.但在高温环境下,锰酸锂正极材料的充放电容量迅速下降,成为制约其发展的主要缺点.从锰酸锂的制备与改性研究方面综述了锂离子电池正极材料锰酸锂的研究进展,在此基础上,提出了正极材料锰酸锂的发展方向.  相似文献   

3.
史鑫  蒲薇华  武玉玲  范丽珍 《化工进展》2011,30(6):1264-1269
层状LiMnO2是高能量密度锂离子电池关键正极材料之一,是当前的研究热点。本文比较系统地综述了目前LiMnO2材料的国内外最新研究现状,对近期的材料制备方法和掺杂改性、表面包覆改性研究的进展情况进行了详细的分析。在已有初步实验基础上提出了将液相共沉淀与高温固相法相结合制备纳米级LiMnO2以及阴阳离子共掺杂结合熔融浸渍包覆方法提高LiMnO2循环性能等合成及改性方法,以提高结构稳定性及循环寿命。  相似文献   

4.
锂离子电池正极材料层状氧化锰锂的研究进展   总被引:2,自引:0,他引:2  
层状氧化锰锂逐渐成为新一代锂离子电池正极材料的研究热点。笔者综述了层状氧化锰锂的结构与电化学性能的内在联系,探讨了不同制备方法及不同元素的掺杂改性对材料性能的影响。探索新的合成方法以及多组分掺杂改性以提高其应用可能性仍是今后层状氧化锰锂的研究发展方向。  相似文献   

5.
锂离子电池用层状LiMnO2基正极材料的研究进展   总被引:4,自引:0,他引:4  
刘静静  仇卫华  赵海雷  李涛 《硅酸盐学报》2005,33(9):1127-1132,1152
层状LiMnO2材料因其结构不稳定、循环性能差,因而需对其进行掺杂改性.层状锰系衍生物具有比容量高、循环性能稳定等优点,已成为锂离子电池新的发展方向.介绍了目前对LiMnO2的掺杂改性研究,对多元层状锰基固溶体正极材料作了重点阐述.总结了近年来关于多元层状锰基正极材料的研究发展,介绍了其晶体结构、电化学性能、合成与制备技术,以及进一步的改性研究.如果多元层状固溶体材料的高倍率放电性能得到进一步的提高,则其必将成为新的一代锂离子电池正极的首选材料.  相似文献   

6.
锂离子电池正极材料尖晶石型锰酸锂研究现状   总被引:2,自引:0,他引:2  
锂离子电池正极材料钴酸锂因价格昂贵、原料有限、污染严重、有毒性,以及其过充不安全性决定了它不可能在大容量和大功率电池中得到应用.尖晶石型锰酸锂以其良好的安全性能以及低廉的成本,成为了锂离子电池在动力领域替代钴酸锂的理想的正极材料.综述了锂离子电池正极材料尖晶石型锰酸锂的制备方法、存在的问题以及解决方案.同时对尖晶石型锰酸锂作为锂离子动力电池正极材料的发展趋势进行了展望.  相似文献   

7.
模板法制备层状锰酸锂正极材料及其电化学性能研究   总被引:1,自引:0,他引:1  
以商业级大孔径硅胶为模板,利用硅胶的多孔结构制备了具有纳米尺寸的层状锰酸锂正极材料(o-LiMnO_2),采用XRD、SEM和N_2吸附技术对样品进行表征,结果表明模板法制备的LiMnO_2结晶度较好,纯度较高,颗粒尺寸大约30 nm左右.用循环充放电测试考察了产物的电化学性能,结果显示了模板法制备的层状锰酸锂具有较好的电化学循环性能,30次充放电后仍能保持较高容量,而未采用模扳法制备的微米级材料容量衰减严重.  相似文献   

8.
镍钴锰酸锂三元材料的化学组成最初出现在20世纪90年代末期的钴酸锂和镍酸锂的掺杂研究中,其作为独立体系材料的研发开始于2001年。在该化合物中,镍呈现正二价,是主要的电化学活性元素;锰呈现正四价,不参与电化学反应,只对材料的结构稳定性和热稳定性提供保证;钴是正三价,部分参与电化学反应,其主要作用是保证材料层状结构的规整度、降低材料电化学极化、提高其倍率性能。该材料具有比容量高、高电压下结构稳定、安全性较好等优点,是目前看来最有应用前景的一种锂离子电池正极材料。  相似文献   

9.
平迅 《上海化工》2005,30(6):11-11
北京市重大科技项目“锂离子电池正极材料锰酸锂的产业化技术开发”最近通过了北京市科委组织的专家验收。该项目由中信国安盟固利电源技术有限公司实施,独立开发出整套规模化生产装置,率先建成年产200吨电化学性能优越的锰酸锂生产线。  相似文献   

10.
本文对高能量尖晶石锰酸锂正极材料的研究进展进行了概括和论述。主要从优化合成工艺和Al、Co、Ni离子掺杂改性制备高能量尖晶石锰酸锂电池正极材料两个方面进行了分析。指出了不同方法合成锰酸锂电池的优缺点,同时对未来高能量锰酸锂电池的发展前景进行了展望。  相似文献   

11.
陈丽鹃  彭天剑  田梅  柳立  唐素娟 《应用化工》2012,(3):473-475,479
在75℃,pH值为6.5下,以一水硫酸锰为原料,采用空气直接氧化法,当控制Mn2+浓度为60~70 g/L,调节适当的空气流量和搅拌速度,反应12 h,即可制备得到符合锂二次电池正极材料用的四氧化三锰,产物为类球形貌,晶形完整,该Mn3O4振实密度大于1.85 g/m3,Mn含量高于70.5%,S含量低于0.15%,主要金属杂质含量均在30×10-6以下,中位粒径在6~14μm范围内。  相似文献   

12.
锂离子电池正极材料锰酸锂的理论比容量较高,但由于多次循环过程中衰减严重,阻碍其商业化应用.综述了近年来其发展状况,总结了尖晶石型锰酸锂正极材料具备比容量较高、原料资源丰富、价格便宜、环境友好等特点,以及各方面应用情况.论述了其结构特点、工作原理、存在缺陷等.着重总结了近期的材料制备方法和稀土掺杂改性研究的进展情况,分类指出了一元稀土掺杂及多元稀土掺杂对材料改性的影响并指出了存在的问题,同时提出了未来的研究方向和发展前景.  相似文献   

13.
Nitrogen‐containing polymeric carbon as anode materials for the lithium ion secondary battery is prepared from polyacrylonitrile (PAN) and melamine–formaldehyde resin (MF) at 600 and 800°C. Its physicochemical properties were investigated through elemental analysis, X‐ray powder diffraction, X‐ray photoelectron spectroscopy, and measurement of specific surface area. Results show that this kind of carbon is amorphous. Nitrogen atoms exist in the prepared polymeric carbon mainly as two states, that is, graphene nitrogen and conjugated nitrogen, and favor the enhancement of reversible lithium capacity. All the prepared polymeric carbon has a reversible capacity higher than that of the theoretic value of graphite, 372 mAh/g, and the highest reversible capacity can be up to 536 mAh/g. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1735–1741, 2000  相似文献   

14.
《无机盐工业》2015,47(6):1
对锂离子电池正极材料的研究进展进行了概括和评述。对钴酸锂、锰酸锂、三元材料、磷酸铁锂等已商品化材料的技术特点进行了分析。指出已商品化材料的技术改进方向。对新型材料5 V高电压尖晶石锰酸锂、富锂层状氧化物材料{xLi2MnO3·(1-x)Li[Mn1/3Ni1/3Co1/3]O2}的发展前景进行了展望。  相似文献   

15.
16.
硅酸盐基材料是一种锂离子电池的新型电极材料。本文简单综述了硅酸盐基材料的结构、合成方法及改性方法,并且对该材料目前存在的问题与应用前景进行了分析和探讨。该材料的开发对于锂离子电池的发展具有积极的推动作用。  相似文献   

17.
Carbon nanobeads (CNBs) were prepared by reacting cyclohexachlorobenzene with dispersed sodium metal at 200 °C for 4 h. The CNBs prepared in this manner formed uniform nanobeads, with sizes ranging from 100 to 300 nm. Heating resulted in a reduction in the size of the CNBs, and improvements in their degree of crystallinity. The nanosized carbon materials considerably increased the surface area of the powder, reducing the distance of the intercalation/deintercalation pathway, substantially improving the charge capacity of the lithium ion battery at a high charging rate. The charge capacity of CNBs was found to be 238 mAh g−1, while that of commercial MCMB reached only 36 mAh g−1, when the charging rate was 1C (372 mAh g−1). As the charging rate was further increased to 2C (744 mAh g−1) and 3C (1116 mAh g−1), the charge capacities of CNBs dropped to 173 and 111 mAh g−1, respectively. The cyclic performance of the CNBs was measured and found to be significantly improved in comparison to other carbonaceous materials, for up to 100 cycles. Although cyclic performance did result in a gradual reduction in capacity, the CNBs still greatly exceeded the capacity of MCMB. These results clearly demonstrate the potential role of CNBs as anodes for high capacity Li ion batteries for use in the automobile industry.  相似文献   

18.
新能源汽车的高速发展,对电池材料的能量密度提出了更高的要求。SnO2-C复合材料因比容量高、倍率性能好、资源丰富、价格低廉等优点而被视为下一代锂、钠离子电池最有潜力的负极材料之一。基于SnO2-C复合材料的尺寸变化和尺寸复合方式,本文对SnO2-C复合材料进行了分类,并且详细综述了SnO2-C复合材料的最新代表性进展,重点涉及尺寸设计公式以及由此产生的协同效应和提高性能的潜力。最后,讨论了该领域未来的发展方向和前景,鉴于协同效应的优良体现,以后该研究将偏于多重复合方向,同时会探索出简单、环保、廉价的合成工艺,不断向商品化的方向靠近。其概念和策略对实际锂离子、钠离子电池金属氧化物-C复合材料的合理设计和可扩展构造提供了一些依据。  相似文献   

19.
综述了L iFePO4的结构特征、充放电机理、合成方法、改性以及电解质的选择等方面的研究,指出对L iFe-PO4的充放电机理进行理论建模,探索可进行工业化生产的制备方法是目前的研究重点。  相似文献   

20.
尖晶石型Li4Ti5O12锂离子电池负极材料研究现状   总被引:1,自引:0,他引:1  
尖晶石型Li4Ti5O12因其在循环过程中具有良好的稳定性和安全性以及优良的快速充电性能,成为锂离子二次电池负极材料研究的热点。较完备的介绍了锂离子电池负极材料尖晶石型Li4Ti5O12的国内外研究制备方法,通过比较,详细描述了各方法存在问题及优缺点,给出了相应问题的解决方案,同时对尖晶石型Li4Ti5O12作为锂离子动力电池负极材料的发展趋势进行了展望,使用Li4Ti5O12负极材料的电池最有可能作为HEV动力电池率先得到应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号