首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptive tracking of nonlinear systems with non-symmetric dead-zone input   总被引:4,自引:0,他引:4  
Quite successfully adaptive control strategies have been applied to uncertain dynamical systems subject to dead-zone nonlinearities. However, adaptive tracking of systems with non-symmetric dead-zone characteristics has not been fully discussed with minimal knowledge of the dead-zone parameters. It is shown that the controlled system preceded by a non-symmetric dead-zone input can be represented as an uncertain nonlinear system subject to a linear input with time-varying input coefficient. To cope with this problem, a new adaptive compensation algorithm is employed without constructing the dead-zone inverse. The proposed adaptive scheme requires only the information of bounds of the dead-zone slopes and treats the time-varying input coefficient as a system uncertainty. The new control scheme ensures bounded-error trajectory tracking and assures the boundedness of all the signals in the adaptive closed loop. By appropriate selections of the controller parameters, we show that the smoothness of the controller does not affect the accuracy of trajectory tracking control. A numerical example is included to show the effectiveness of the theoretical results.  相似文献   

2.
李元新  魏淑仪 《控制与决策》2023,38(8):2326-2334
将一类具有输入饱和的严格反馈单输入单输出非线性系统作为研究对象,解决其自适应渐近跟踪控制问题.与已有结果不同,所考虑的虚拟控制参数可以是未知且增益函数的上界信息也是未知的,这给控制器的设计带来了挑战.通过结合光滑函数及有界估计方法,设计一种新颖的自适应渐近跟踪控制策略;其次,通过引入Nassbaum函数解决由输入饱和不确定参数以及未知虚拟控制参数带来的影响;此外,通过利用未知增益的下界信息巧妙地构造一个特殊的李雅普诺夫函数并结合不等式技巧,可以消除对控制增益函数上界信息的需要,并保证系统的全局稳定性和跟踪性能;最后,通过实例仿真及对比仿真表明所提出自适应渐近跟踪控制算法的有效性.  相似文献   

3.
挠性卫星姿态跟踪自适应L2增益控制   总被引:1,自引:1,他引:1  
针对在轨挠性卫星姿态跟踪时存在参数不确定、外部干扰以及控制输入受限等问题,提出了一种自适应L2增益控制方法.首先利用神经网络来逼近系统中的未知非线性动态特性,设计自适应控制律来处理系统中的不确定参数:其次设计了一鲁棒控制器使得干扰力矩对系统性能输出具有L2增益,从而实现对干扰的抑制控制.最后通过引入附加的输入误差系统,...  相似文献   

4.
In this paper, adaptive tracking control is proposed for a class of uncertain multi-input and multi-output nonlinear systems with non-symmetric input constraints. The auxiliary design system is introduced to analyze the effect of input constraints, and its states are used to adaptive tracking control design. The spectral radius of the control coefficient matrix is used to relax the nonsingular assumption of the control coefficient matrix. Subsequently, the constrained adaptive control is presented, where command filters are adopted to implement the emulate of actuator physical constraints on the control law and virtual control laws and avoid the tedious analytic computations of time derivatives of virtual control laws in the backstepping procedure. Under the proposed control techniques, the closed-loop semi-global uniformly ultimate bounded stability is achieved via Lyapunov synthesis. Finally, simulation studies are presented to illustrate the effectiveness of the proposed adaptive tracking control.  相似文献   

5.
6.
控制量前具有不确定系数的电液伺服系统自适应控制   总被引:2,自引:0,他引:2  
针对控制输入前具有不确定系数的电液伺服位置系统精确跟踪控制问题, 提出了一种改进的自适应Backstepping控制器设计方法. 该方法通过对系统模型的等价变换和选择合适的Lyapunov函数, 有效解决了系统模型中控制输入前存在不确定系数而导致所设计的控制器存在参数自适应律, 而自适应律中存在控制量造成的嵌套难题. 以驱动连铸结晶器的电液伺服位置系统为例, 进行了控制器的设计和稳定性证明. 仿真研究结果表明, 所提出的改进设计方法是可行的, 设计的控制器具有较强的鲁棒性和良好的跟踪性能.  相似文献   

7.
In this paper, the adaptive tracking control problem is investigated for the multiagent systems with event-triggered (ET) communication and asymmetric input saturation. By adopting an auxiliary system, the problem of asymmetric input saturation is successfully handled. Two ET mechanisms are employed in the controller-to-actuator channel and communication channel respectively to economize the limited communication resources. The update frequency of the controller can be reduced by devising a novel switching ET mechanism, which can unify the three existing ET schemes. Based on a backstepping technique, a distributed ET controller is devised, which only requires the sampled value of neighboring states. Due to the discontinuity of the ET state signals, the repetitive differentiation of virtual control laws will not be computed. To solve this problem, the predesigned differentiable partial derivatives of virtual control laws are used to construct the ET virtual control laws. By applying the Lyapunov stability method, it is proved that the desired tracking performance and the stability of the closed-loop system can be guaranteed. Finally, a simulation example demonstrates that the proposed control strategy is effective.  相似文献   

8.
Delphine  Miroslav   《Automatica》2009,45(9):2074-2081
In a recent paper we presented the first adaptive control design for an ODE system with a possibly large actuator delay of unknown length. We achieved global stability under full state feedback. In this paper we generalize the design to the situation where, besides the unknown delay value, the ODE also has unknown parameters, and where trajectory tracking (rather than equilibrium regulation) is pursued.  相似文献   

9.
An optimization approach is proposed to derive non-linear model-based control laws for non-linear processes with actuator saturation non-linearities. The derived control laws induce a linear closed-loop process output response in the absence of input constraints (are input-output linearizing), are able to minimize the mismatch between the constrained and the linear unconstrained process output responses, and inherently include optimal directionality and windup compensators. Connections between the derived control laws and (a) already available, input-output linearizing, non-linear, control methods, (b) modified internal model control, and (c) model state feedback control, are established. The application and performance of the derived control laws are shown by examples.  相似文献   

10.
In this article, the adaptive tracking control problem is considered for a class of uncertain nonlinear systems with input delay and saturation. To compensate for the effect of the input delay and saturation, a compensation system is designed. Radial basis function neural networks are directly utilized to approximate the unknown nonlinear functions. With the aid of the backstepping method, novel adaptive neural network tracking controllers are developed, which can guarantee all the signals in the closed‐loop system are semiglobally uniformly ultimately bounded, and the system output can track the desired signal with a small tracking error. In the end, a simulation example is given to illustrate the effectiveness of the proposed methods.  相似文献   

11.
This paper proposes a nonlinear adaptive control for output tracking of multi‐input multi‐output nonlinear nonminimum phase system with input nonlinearity. The parameters of the input nonlinearity are assumed to be unknown. This problem is challenging, not only because of the unstable internal dynamics of nonminimum phase system, but also the existence of the unknown input nonlinearity. The partially linearized model of the original system is obtained through input/output linearization, and a states tracking model is constructed based on the computed ideal internal dynamics. A nonlinear adaptive controller, which can guarantee the bounded of output tracking error in the existence of unknown input nonlinearity, is proposed. Finally, a numerical simulation on vertical takeoff and landing aircraft is given to show the effectiveness of the proposed control methods.  相似文献   

12.
针对输入输出受限,模型部分不确定和受到未知海洋干扰的全驱动船舶的轨迹跟踪问题,提出一种基于时变非对称障碍李雅普诺夫函数的最小参数自适应递归滑模控制策略.该策略首先设计障碍李雅普诺夫函数约束船舶轨迹在有限区域内,利用最小参数法神经网络逼近模型不确定项,降低系统的计算复杂度,然后采用指令滤波器对输入信号进行幅值约束,同时避免对因反步法导致的微分爆炸问题,综合考虑船舶位置以及速度误差间的关系设计递归滑模控制律,提高系统的鲁棒性,采用双曲正切函数和Nussbaum函数补偿由输入饱和引起的非线性项,提高系统稳定性.最后通过Lyapunov理论分析证明了全驱动船舶闭环系统中所有信号是一致最终有界的.仿真结果表明,本文所设计的船舶轨迹跟踪控制方案能有效处理船舶模型不确定部分以及未知外界干扰的问题,能够实现船舶在输入受限的情况下在有限区域内航行并准确的跟踪期望轨迹,具有较强的鲁棒性.  相似文献   

13.
The authors develop a systematic procedure for obtaining robust adaptive controllers that achieve asymptotic tracking and disturbance attenuation for a class of nonlinear systems which are described in the parametric strict-feedback form and are subject to additional exogenous disturbance inputs. Their approach to adaptive control is performance-based, where the objective for the controller design is not only to find an adaptive controller, but also to construct an appropriate cost functional, compatible with desired asymptotic tracking and disturbance attenuation specifications, with respect to which the adaptive controller is “worst case optimal”. Three main issues of the paper are: the backstepping methodology, worst case identification schemes, and singular perturbations analysis. Closed-form expressions have been obtained for an adaptive controller and the corresponding value function. A numerical example involving a third-order system is given  相似文献   

14.
This paper is concerned with the problem of adaptive output feedback quantised tracking control for a class of stochastic nonstrict-feedback nonlinear systems with asymmetric input saturation. Especially, both input and output signals are quantised by two sector-bounded quantisers. In order to solve the technical difficulties originating from asymmetric saturation nonlinearities and sector-bounded quantisation errors, some special technique, approximation-based methods and Gaussian error function-based continuous differentiable model are exploited. Meanwhile, an observer including the quantised input and output signals is designed to estimate the states. Then, a novel output feedback adaptive quantised control scheme is proposed to ensure that all signals in the closed-loop system are 4-moment (2-moment) semi-globally uniformly ultimately bounded while the output signal follows a desired reference signal. Finally, the effectiveness and applicability of the design methodology is illustrated with two simulation examples.  相似文献   

15.
In this paper, the problem of adaptive neural network asymptotical tracking is investigated for a class of nonlinear system with unknown function, external disturbances and input quantisation. Based on neural network technique, an adaptive asymptotical tracking controller is provided for an uncertain nonlinear system via backstepping method. In order to reduce complexity of the control algorithm in the backstepping design process, a sliding mode differentiator is employed to estimate the virtual control law and only two parameters need to be estimated via adaptive control technique. The stability of the closed-loop system is analysed by using Lyapunov function method and zero-tracking error performance is obtained in the presence of unknown nonlinear function, external disturbances and input quantisation. Finally, an application example is employed to demonstrate the effectiveness of the proposed scheme.  相似文献   

16.
不确定轮式移动机器人的任意轨迹跟踪   总被引:1,自引:0,他引:1  
本文研究参数不确定轮式移动机器人的任意轨迹跟踪统一控制问题.通过引入坐标变换、输入变换和辅助动态,将机器人模型转换为合适的形式;进而运用Lyapunov方法和自适应技术设计了一种自适应统一控制器,该控制器可以保证跟踪误差全局一致最终有界,且最终界大小可以通过调整控制器参数而任意调节.仿真结果验证了控制律的有效性.  相似文献   

17.
An adaptive fuzzy robust tracking control (AFRTC) algorithm is proposed for a class of nonlinear systems with the uncertain system function and uncertain gain function, which are all the unstructured (or nonrepeatable) state-dependent unknown nonlinear functions arising from modeling errors and external disturbances. The Takagi-Sugeno type fuzzy logic systems are used to approximate unknown uncertain functions and the AFRTC algorithm is designed by use of the input-to-state stability approach and small gain theorem. The algorithm is highlighted by three advantages: 1) the uniform ultimate boundedness of the closed-loop adaptive systems in the presence of nonrepeatable uncertainties can be guaranteed; 2) the possible controller singularity problem in some of the existing adaptive control schemes met with feedback linearization techniques can be removed; and 3) the adaptive mechanism with minimal learning parameterizations can be obtained. The performance and limitations of the proposed method are discussed. The uses of the AFRTC for the tracking control design of a pole-balancing robot system and a ship autopilot system to maintain the ship on a predetermined heading are demonstrated through two numerical examples. Simulation results show the effectiveness of the control scheme.  相似文献   

18.
A novel adaptive output feedback control approach is presented for formation tracking of a multiagent system with uncertainties and quantized input signals. The agents are described by nonlinear dynamics models with unknown parameters and immeasurable states. A high-gain dynamic state observer is established to estimate the immeasurable states. With a proper design parameter choice, an adaptive output feedback control method is developed employing a hysteretic quantizer and the designed dynamic state observer. Stability analysis shows that the control strategy can guarantee that the agents can maintain the formation shape while tracking the reference trajectory. In addition, all the signals in the closed-loop system are bounded. The effectiveness of the control strategy is validated by simulation.  相似文献   

19.

In this paper, an adaptive iterative learning controller (AILC) with input learning technique is presented for uncertain multi-input multi-output (MIMO) nonlinear systems in the normal form. The proposed AILC learns the internal parameter of the state equation as well as the input gain parameter, and also estimates the desired input using an input learning rule to track the whole history of command trajectory. The features of the proposed control scheme can be briefly summarized as follows: 1) To the best of authors’ knowledge, the AILC with input learning is first developed for uncertain MIMO nonlinear systems in the normal form; 2) The convergence of learning input error is ensured; 3) The input learning rule is simple; therefore, it can be easily implemented in industrial applications. With the proposed AILC scheme, the tracking error and desired input error converge to zero as the repetition of the learning operation increases. Single-link and two-link manipulators are presented as simulation examples to confirm the feasibility and performance of the proposed AILC.

  相似文献   

20.
In this paper, a model reference adaptive controller is designed using the Lyapunov method, for tracking a time varying power profile in an automobile powered by a fuel cell. The adaptability of the controller is tested by implementing the controller on different power profiles which simulate actual power requirement of different road conditions. The performance of the adaptive controller is compared with a conventional PID controller and it is observed that the adaptive controller has superior performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号