首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以聚磷酸胺(APP)为阻燃剂,与阻燃树脂复配,添加到PE基木塑复合材料(WPC)中,制备了阻燃木塑复合材料。用氧指数仪(OI)、锥形量热分析(CONE)研究了WPC的各项阻燃性能。结果表明:阻燃WPC的OI达到38%,比普通木塑材料提高了58.33%,成炭率高于20%,点火时间(TTI)达到30 s;通过自制的相容剂Ⅱ(EVA/VC-g-MA)可以有效提高PVC与PE的相容性,产品的力学性能与普通木塑材料相比变化不大。研究表明,WPC的阻燃性能和力学性能随APP用量、阻燃树脂配方不同而变化,但TTI和有害气体变化不大。  相似文献   

2.
APP在PE基木塑复合材料中的阻燃作用研究   总被引:3,自引:0,他引:3  
研究了阻燃剂聚磷酸胺(APP)用量、木粉用量、APP与季戊网醇(PER)复配比例对PE基木塑复合材料阻燃性能的影响.用TGA和SEM分析了APP在PE基木塑复合材料中的阻燃作用机理.结果表明:APP对木塑复合材料的阻燃规律与其对塑料的阻燃规律有所不同,木塑复合材料中存在的大量木粉对APP的阻燃具有明显的协效作用,而PER的协效作用却小显著;随着APP用量或木粉用量的增加,木塑复合材料的极限氧指数(LOI)均显著增加.TGA和SEM分析表明,燃烧后残炭量增加与膨胀发泡是APP在木塑复合材料中具有阻燃性的主要原因.  相似文献   

3.
膨胀型阻燃剂对聚丙烯-木粉复合材料阻燃及性能的影响   总被引:1,自引:0,他引:1  
董吉  李斌 《化学与粘合》2007,29(4):269-271,283
主要以聚磷酸铵(APP)、季戊四醇(PER)、以及自制的成炭发泡剂(CFA)复配成的膨胀型阻燃剂对聚丙烯-木粉复合材料进行阻燃.并通过一系列的性能实验研究了不同的阻燃剂配方及阻燃剂含量对聚丙烯-木粉复合材料的力学性能、阻燃性能、流变行为以及热降解行为的影响.结果表明,膨胀型阻燃体系可以提高聚丙烯-木粉复合材料的LOI与成炭性,当添加量为25%时,APP与PER复配阻燃的复合材料的LOI可达27.5,800℃时残余炭含量为19.24%.而且该阻燃剂的加入对提高材料的拉伸和弯曲强度有一定作用.  相似文献   

4.
选用聚磷酸铵(APP)与二乙基次膦酸铝(ADP)复配用于木塑复合材料(WPC)的阻燃并研究了材料的阻燃性能。结果表明,纯WPC的氧指数(LOI)值为23.5%,当单独添加19%(wt)的APP时,材料通过了垂直燃烧测试UL-94 V-0级,LOI值为28.9%。当APP与ADP以质量比为6∶1复配,阻燃剂总添加量仅为15%(wt)时,材料通过了UL-94 V-0级,LOI值达到了28.7%,表明ADP/APP体系对WPC具有很好的协同阻燃效应。力学性能测试表明,APP/ADP体系的加入对材料的力学性能影响较小。热重分析测试表明,APP/ADP体系促进了材料的初期热降解,但提高了材料的成炭性能。锥形量热测试及扫描电镜对残炭的测试表明,APP/ADP体系的加入使得材料在燃烧过程中形成了膨胀、连续的炭层,很好地抑制了材料的燃烧,使得材料的热释放速率、总热释放量显著降低。  相似文献   

5.
采用聚磷酸铵(APP)与季戊四醇(PER)协效无卤阻燃聚乙烯(PE)复合材料,制备出不同膨胀阻燃剂用量的无卤阻燃PE复合材料,研究阻燃剂的添加量对材料性能的影响,并观察阻燃剂在复合材料中的分散状况。结果表明,随着增加体系中膨胀阻燃剂的添加量,材料拉伸性能与抗冲击性能变差,阻燃性能得到明显提高,阻燃剂的分散效果变差,团聚现象加重。  相似文献   

6.
林立  许苗军  李斌  李洋 《中国塑料》2013,27(4):42-46
利用十八烷基胺对聚磷酸铵(APP)进行表面修饰改性,通过静态接触角对改性后的APP进行润湿性能的测试,其接触角达到了136°,说明改性后的APP具有良好的疏水性能。将改性的APP与成炭发泡剂(CFA)以4:1的比例进行复配后加入到聚乙烯(PE)中,制备阻燃PE材料,并通过氧指数(LOI)和垂直燃烧研究了材料的阻燃性能,通过拉伸和弯曲测试研究了材料的力学性能,通过水煮的方法研究了阻燃材料的耐水性。测试结果表明,与未改性的APP相比,APP的表面改性使得阻燃PE材料的阻燃性能略有降低,但提高了阻燃剂与聚合物的相容性,阻燃PE的力学得到了提高,同时阻燃材料的耐水性能得到了大幅度的提高,其阻燃剂的水抽出率大大降低,当阻燃剂的添加量为25%时,阻燃材料的抽出率仅为0.12%。  相似文献   

7.
《塑料科技》2016,(10):66-70
将可膨胀石墨(EG)与聚磷酸铵(APP)复配并添加至聚苯乙烯(PS)基体中,制备了PS/EG/APP阻燃复合材料。通过极限氧指数(LOI)、水平垂直燃烧(UL 94)测试,以及热重分析(TG)和扫描电镜分析(SEM)对PS/EG/APP阻燃复合材料的阻燃性能和热稳定性进行了检测,并优化了该材料配方。结果表明:复合阻燃剂EG/APP的加入,使得体系的LOI值与热稳定性均明显提高。其中当复合阻燃剂EG/APP的添加量为30 phr,且质量比为3:1时,阻燃体系的LOI值可达到31.8%,而单独添加同量EG或APP的阻燃体系,其LOI值仅为29%和20.8%,这说明EG与APP之间存在协同效应。  相似文献   

8.
通过添加可膨胀石墨(EG)和聚磷酸铵(APP)单组分阻燃剂及其复配阻燃剂,制备了聚氨酯–酰亚胺(PUI)泡沫塑料阻燃体系,并对其阻燃性能、热性能、表面碳层形貌及力学性能等进行了研究。结果表明,在相同阻燃剂添加量下,复配阻燃体系的极限氧指数(LOI)值高于单一阻燃剂阻燃体系,PUI/EG/APP体系的LOI值由18.6%提高至30.9%。热失重分析表明EG和APP间的相互作用导致了PUI/EG/APP体系在高温阶段的热降解速率下降,残炭率显著上升。扫描电镜分析表明PUI/EG/APP体系在燃烧后能生成更加连续和致密的炭层。在相同阻燃剂添加量的情况下,EG/APP复配使用能够减少EG对PUI压缩性能的损害。  相似文献   

9.
通过在表层添加有机改性蒙脱土(OMMT)与聚磷酸铵(APP)以及纳米氢氧化镁[Mg(OH)_2]与APP制备具有阻燃功能的核壳型木塑复合材料,并利用力学性能测试、锥形量热测试和热重分析,研究了阻燃剂对核壳型木塑复合材料的力学性能、燃烧性能和热稳定性能的影响。结果表明,OMMT与APP有更好的协同效果和阻燃效果,其热释放总量以及热释放速率都呈下降趋势,但是复配之后的产烟量却增多。热失重分析结果表明,APP与OMMT的复配和APP与Mg(OH)_2的复配相比较,前者残炭率更高,达到了55.2%。两种阻燃剂复配后弯曲强度和弹性模量呈现下降趋势,力学强度下降。综合比较,APP与OMMT复配阻燃性能更好。  相似文献   

10.
利用甲基苯基聚硼硅氧烷(PB)及其与纳米Si O2或APP的复合阻燃剂制备了阻燃木塑复合材料,研究了阻燃剂对木塑复合材料(WPC)阻燃性能和力学性能的影响。结果表明,在热降解过程中,聚硼硅氧烷显著提高了木塑复合材料的800℃残炭率,促进了残炭的形成,PB与纳米Si O2或APP复配使用可使木塑复合材料的热降解残炭进一步提高。PB及其复合阻燃剂使木塑复合材料的热、CO2释放速率及质量损失率降低,PB与APP复配对木塑复合材料的阻燃效果最好。PB及其复合阻燃剂使木塑复合材料的弯曲强度明显提高,对拉伸强度影响不大,但使冲击强度下降。  相似文献   

11.
选择竹粉与高密度聚乙烯(HDPE)作为原料,通过加入复合阻燃剂的方法并对其实施共混挤出制备得到木塑材料,之后对该材料的吸水性、力学强度与阻燃性开展实验分析。结果表明,随木塑材料的竹粉添加量上升,复合材料的拉伸强度不断增大,伸长率减小。将HDPE、竹粉与马来酸酐接枝聚乙烯(PE-g-MAH)质量比设定在50/45/5的比例时,材料获得良好的综合力学性能。当木粉的添加量上升后,HDPE/木塑材料获得了更高的吸水率。当PE-gMAH添加量上升,材料力学性能提高。复合型阻燃剂不会使该材料的力学性能发生变化。在没有加入阻燃剂的情况下,测试HDPE/竹粉材料的极限氧指数(LOI)为21. 26%。当膨胀石墨的添加量增加后,HDPE/木塑材料的LOI也明显升高。  相似文献   

12.
《塑料科技》2015,(9):83-86
将大分子含磷-氮阻燃剂三聚氰胺四亚甲基硫酸膦齐聚物(MTMPSO)与聚磷酸铵(APP)复配得到的膨胀阻燃体系(IFR)添加到聚乙烯(PE)中制备成阻燃型PE材料(IFR-PE),研究了材料的阻燃性能、热降解行为、燃烧后的残炭形貌、力学性能及耐水性。实验结果表明:当IFR添加量为32%时,IFR-PE可通过UL 94V-0级,极限氧指数(LOI)达到了26%。热重分析(TGA)测试表明:800℃时,IFR-PE残炭率为23.4%,表明阻燃剂的添加大大提高了材料的成炭性能。扫描电镜(SEM)结果表明:IFR-PE燃烧后形成连续致密的炭层,能有效阻止热量传递和可燃气体的流动,提高了材料的阻燃性能。耐水性实验表明:IFR-PE的失重率仅为0.46%,具有很好的耐水性能。  相似文献   

13.
利用自制的三嗪环低聚物(PMPT)及复合阻燃剂制备阻燃聚丙烯材料,研究复合阻燃剂APP/PER/PMPT用量对阻燃PP力学性能、热分解性能的影响,并初步推测阻燃剂PMPT的阻燃机理.结果表明:加入复合阻燃剂使阻燃PP的力学性能有所下降.TG曲线显示:复合阻燃剂使阻燃PP的热分解速率减小,热稳定性增加.复合阻燃剂APP/PER/PMPT使PP的氧指数(LOI)增加62%.APP/PER/PMPTF复合阻燃剂主要在凝聚相起到阻燃作用.  相似文献   

14.
研究了无卤、含磷添加型阻燃剂红磷、包覆红磷、聚磷酸铵、包覆聚磷酸铵、含磷膨胀型阻燃剂PNP、三聚氰胺焦磷酸盐等6种阻燃剂对硬质聚氨酯泡沫塑料阻燃及力学性能的影响。结果表明,随着阻燃剂添加量的增加,阻燃硬质聚氨酯泡沫塑料的极限氧指数(LOI)总体上呈升高趋势,拉伸强度呈先上升后下降趋势,而冲击强度呈逐渐下降趋势。包覆红磷和包覆聚磷酸铵阻燃材料的阻燃性能和力学性能均明显好于普通红磷和聚磷酸铵阻燃剂,PNP阻燃材料具有最佳的阻燃性能和力学性能,当PNP添加量为25%时,阻燃材料的LOI为29.5%,拉伸强度和冲击强度分别为5.3 MPa和8.7 kJ/m2。  相似文献   

15.
采用聚磷酸铵(APP)和磷氮类阻燃剂(NEWRAY911)对苎麻/苯并噁嗪树脂层压板进行阻燃改性,并通过万能材料试验机、极限氧指数(LOI)、垂直燃烧实验、热失重仪(TG)和微型燃烧量热仪(MCC)对层压板性能进行分析。实验结果表明:经过APP改性后的层压板LOI有明显的增加,但只有当APP添加量达到7%时层压板的垂直燃烧才能通过V0级,且APP过多的添加也使层压板的力学性能有较大的损伤。采用NEWRAY911阻燃改性苎麻织物不仅可以使层压板的阻燃性能得到改善,同时也减少APP的添加量,使苎麻/苯并噁嗪树脂层压板在阻燃改性的同时保持了良好的力学性能。经APP和NEWRAY911改性后的层压板明显减缓了分解速率、燃烧热释放量及释放速率,提高了热分解的残炭量。  相似文献   

16.
《弹性体》2017,(3)
阻燃天然橡胶/氯化聚氯乙烯(NR/CPVC)热塑性弹性体(TPV)是在双辊炼塑机上采用动态硫化法制备而成。主要研究了单用磷氮阻燃剂(PNP)及PNP/三氧化锑(Sb_2O_3)复配阻燃剂对TPV力学性能及阻燃效果的影响,采用热重法(TG)对TPV进行了热氧降解性能分析及阻燃机理探讨。结果表明,少量Sb_2O_3即可与PNP形成有效的协效阻燃作用,并且采用质量分数为40%的PNP与质量质量分数为3%的Sb_2O_3复配阻燃的TPV的相对极限氧指数值(LOI)可达到26.9%,燃烧等级达到UL 94-V0级,只溢出稀薄白色烟雾,并具有较高的力学性能保持率,而添加质量分数为40%的PNP与质量分数为5%的Sb_2O_3复配阻燃剂的TPV的LOI值则达到28.1%。凝聚相成炭阻燃机理是PNP/Sb_2O_3的主要阻燃机理,而阻燃剂在高温下释放不燃性气体的气相阻燃也起到较好的辅助效果。  相似文献   

17.
利用无卤膨胀阻燃剂(IFR)阻燃长玻纤增强聚丙烯(LGFPP)复合材料,研究IFR的添加量对复合材料阻燃性能、热稳定性能、燃烧性能和力学性能的影响。结果表明,加入IFR使复合材料燃烧后生成了具有阻燃作用的炭层,显著提高了复合材料的阻燃性能。随IFR添加量的增加,复合材料的极限氧指数(LOI)逐渐提高,热释放速率峰值及其平均值、总热释放速率和生烟速率逐渐降低,力学性能略有下降。当IFR质量分数为20%时,复合材料的LOI和垂直燃烧等级分别达到了24.4%和UL 94 V-0级。  相似文献   

18.
采用无卤阻燃剂聚磷酸铵(APP)以及阻燃协效剂硼酸锌(ZB)、硅藻土,制备具有良好阻燃性能的木塑复合材料。结果表明:APP在改善木塑复合材料阻燃性能的同时,可提高材料的热稳定性,当其用量为20份时,复合材料垂直燃烧达到UL94V-0级,此时,体系的力学性能变化不大;ZB、硅藻土对木塑复合材料的协效阻燃规律不同于对塑料的阻燃规律,添加2份硅藻土的阻燃体系形成的炭层最致密,可有效地隔热隔氧。  相似文献   

19.
利用乙二胺(EDA)对聚磷酸铵(APP)进行改性,得到聚磷酸铵衍生物(MAPP)。采用MAPP、石墨(EG)和木粉(MF)复配的方式得到膨胀性阻燃剂,并与EVA复合得到泡沫复合材料。采用FT-IR、XRD、1H NMR表征接枝效果,利用LOI和UL-94测试仪、锥形量热仪(CONE)、TG及SEM等分析材料的阻燃性能、残炭的形态及力学性能。结果表明:EDA已成功接枝在APP上,所形成的MAPP能够有效提高复合发泡材料的阻燃性能、减少热释放量;MAPP/EVA复合发泡材料的残炭层更加致密和完整,能够有效起到隔热、隔氧的作用;并且MAPP能够提高材料的耐水性及与EVA基体的相容性。当MAPP添加量为20%时,体系的LOI可达27.6%,且UL-94为V-0级别,拉伸强度、断裂伸长率分别可达1.282 MPa、236.40%,阻燃材料的综合性能达到最优。  相似文献   

20.
采用膨胀型阻燃剂敌火龙(Deflam)对聚乙烯(PE)进行填充改性,制备了阻燃PE复合材料,研究Deflani添加量对PE复合材料的力学性能、热稳定性能和阻燃性能的影响.结果表明:随阻燃剂的增加,阻燃PE复合材料的力学性能明显下降,但阻燃等级、极限氧指数均有显著提高,并且有利于提高PE材料的总体热稳定性.热重(TG)曲...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号