首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Fourier series decomposes a function x ( t ) into a sum of periodic components that have sinusoidal shapes. This paper describes an adaptive Fourier series where the periodic components of x ( t ) may have a variety of differing shapes. The periodic shapes are adaptive since they depend on the function x ( t ) and the period. The results, which extend both Fourier analysis and Walsh–Fourier analysis, are applied to investigate the shapes of periodic components in time series data sets.  相似文献   

2.
Under the frequency domain framework for weakly dependent functional time series, a key element is the spectral density kernel which encapsulates the second-order dynamics of the process. We propose a class of spectral density kernel estimators based on the notion of a flat-top kernel. The new class of estimators employs the inverse Fourier transform of a flat-top function as the weight function employed to smooth the periodogram. It is shown that using a flat-top kernel yields a bias reduction and results in a higher-order accuracy in terms of optimizing the integrated mean square error (IMSE). Notably, the higher-order accuracy of flat-top estimation comes at the sacrifice of the positive semi-definite property. Nevertheless, we show how a flat-top estimator can be modified to become positive semi-definite (even strictly positive definite) in finite samples while retaining its favorable asymptotic properties. In addition, we introduce a data-driven bandwidth selection procedure realized by an automatic inspection of the estimated correlation structure. Our asymptotic results are complemented by a finite-sample simulation where the higher-order accuracy of flat-top estimators is manifested in practice.  相似文献   

3.
Many studies record replicated time series epochs from different groups with the goal of using frequency domain properties to discriminate between the groups. In many applications, there exists variation in cyclical patterns from time series in the same group. Although a number of frequency domain methods for the discriminant analysis of time series have been explored, there is a dearth of models and methods that account for within‐group spectral variability. This article proposes a model for groups of time series in which transfer functions are modelled as stochastic variables that can account for both between‐group and within‐group differences in spectra that are identified from individual replicates. An ensuing discriminant analysis of stochastic cepstra under this model is developed to obtain parsimonious measures of relative power that optimally separate groups in the presence of within‐group spectral variability. The approach possesses favourable properties in classifying new observations and can be consistently estimated through a simple discriminant analysis of a finite number of estimated cepstral coefficients. Benefits in accounting for within‐group spectral variability are empirically illustrated in a simulation study and through an analysis of gait variability.  相似文献   

4.
The aggregation/disaggregation problem has been widely studied in the time series literature. Some main issues related to this problem are modelling, prediction and robustness to outliers. In this paper we look at the modelling problem with particular interest in the local level and local trend structural time series models together with their corresponding ARIMA(0, 1, 1) and ARIMA(0, 2, 2) representations. Given an observed time series that can be expressed by a structural or autoregressive integrated moving-average (ARIMA) model, we derive the necessary and sufficient conditions under which the aggregate and/or disaggregate series can be expressed by the same class of model. Harvey's cycle and seasonal components models (Harvey, Forecasting, Structural Time Series Models and the Kalman Filter , Cambridge: Cambridge University Press, 1989) are also briefly discussed. Systematic sampling of structural and ARIMA models is also discussed.  相似文献   

5.
We discuss classes of Bayesian mixture models for nonlinear autoregressive times series, based on developments in semiparametric Bayesian density estimation in recent years. The development involves formal classes of multivariate discrete mixture distributions, providing flexibility in modeling arbitrary nonlinearities in time series structure and a formal inferential framework within which to address the problems of inference and prediction. The models relate naturally to existing kernel and related methods, threshold models and others, although they offer major advances in terms of parameter estimation and predictive calculations. Theoretic al and computational aspects are developed here, the latter involving efficient simulation of posterior and predictive distributions. Various examples illustrate our perspectives on identification and inference using this mixture approach  相似文献   

6.
Within the framework of functional data analysis, we develop principal component analysis for periodically correlated time series of functions. We define the components of the above analysis including periodic operator‐valued filters, score processes, and the inversion formulas. We show that these objects are defined via a convergent series under a simple condition requiring summability of the Hilbert–Schmidt norms of the filter coefficients and that they possess optimality properties. We explain how the Hilbert space theory reduces to an approximate finite‐dimensional setting which is implemented in a custom‐build |R| package. A data example and a simulation study show that the new methodology is superior to existing tools if the functional time series exhibits periodic characteristics.  相似文献   

7.
A test for categorical time series is developed which is based on Fisher's test for continuous-parameter time series. Instead of using a test based on the Fourier periodog ram for spectral analysis, we utilize the Walsh–Fourier periodogram for testing purposes. We briefly explain the theory behind Walsh–Fourier analysis and some of its recent applications. Asymptotic results for the distribution of the new test statistic for Walsh–Fourier spectra are presented and compared with a simulated distribution. We also perform power studies in order to assess the detection capability of the test. In the presence of multiple peaks in the spectrum, this test tends to lose power. Therefore, we also explore several alternatives to the test for Walsh–Fourier spectra and apply all of the alternative methods to a realization of geomagnetic reversals  相似文献   

8.
This work investigates outlier detection and modelling in non‐Gaussian autoregressive time series models with margins in the class of a convolution closed parametric family. This framework allows for a wide variety of models for count and positive data types. The article investigates additive outliers which do not enter the dynamics of the process but whose presence may adversely influence statistical inference based on the data. The Bayesian approach proposed here allows one to estimate, at each time point, the probability of an outlier occurrence and its corresponding size thus identifying the observations that require further investigation. The methodology is illustrated using simulated and observed data sets.  相似文献   

9.
This paper derives the admissible decompositions for a time series dynamic linear model, assuming only that the model is observable. The decompositions depend on factorizations of the characteristic polynomial of the state evolution matrix G into relatively prime factors. This generalizes the method of West (1997 ) which considers one decomposition in the particular case where G is diagonalizable. Conditions are derived for a decomposition to be independent. These results show that no autoregressive process of order d has an independent decomposition for any integer d . Two illustrations of this procedure are discussed in detail.  相似文献   

10.
The aim of this article is to introduce new resampling scheme for nonstationary time series, called generalized resampling scheme (GRS). The proposed procedure is a generalization of well known in the literature subsampling procedure and is simply related to existing block bootstrap techniques. To document the usefulness of GRS, we consider the example of model with almost periodic phenomena in mean and variance function, where the consistency of the proposed procedure was examined. Finally, we prove the consistency of GRS for the spectral density matrix for nonstationary, multivariate almost periodically correlated time series. We consider both zero mean and non‐zero mean case. The consistency holds under general assumptions concerning moment and α‐mixing conditions for multivariate almost periodically correlated time series. Proving the consistency in this case poses a difficulty since the estimator of the spectral density matrix can be interpreted as a sum of random matrixes whose dependence grow with the sample size.  相似文献   

11.
Often, in practice, one may regard an observed time series as being composed of a function that is smooth over years, with additive seasonal effects. As a modification, we formulate a particular multiplicative model that expresses the observed data as a yearly trend function with additive amplitude-modulated seasonal factors. Without smoothness restrictions on the yearly trend and modulation components, the least squares solutions for the seasonal components are shown to be proportional to the eigenvector corresponding to the maximum eigen value of the within-season covariance matrix. If the trend and seasonal modulations are modeled as smooth splines, we give the comparable estimators for the smooth functions and the seasonal factors. We show consistency for the trend, modulation and seasonal factors as well as asymptotic normality for the seasonal estimates. Model selection, fitting and forecasting are considered for a quarterly earnings series that exhibits extreme nonlinear and nonstationary behavior. We compare the results with those obtained using a competing nonstationary multiplicative ARIMA model  相似文献   

12.
In this paper, a new frequency‐domain test is proposed to check the equality of spectral densities of two or more stationary time series. The proposed test is able to deal with multiple independent time series of different lengths naturally, based on some regression models of log periodograms. The asymptotic null distribution of the proposed test is obtained. The consistency is shown under any fixed alternative and a sequence of local alternatives. A simulation study is conducted to examine the finite sample performance of the test. By jointly modeling all log periodograms, the test is empirically robust when multiple time series are mutually dependent to some extent. It also works well for non‐Gaussian time series. The proposed test is applied to compare several vibrational signals for damage detection of a mechanical system.  相似文献   

13.
Self‐normalization has been celebrated as an alternative approach for inference of time series because of its ability to avoid direct estimation of the nuisance asymptotic variance. However, when being applied to quantities other than the mean, the conventional self‐normalizer typically exhibits certain degrees of asymmetry, an undesirable feature especially for time‐reversible processes. This paper considers a new self‐normalizer for time series, which (i) provides a time‐symmetric generalization to the conventional self‐normalizer, (ii) is able to automatically reduce to the conventional self‐normalizer in the mean case where the latter is already time‐symmetric to yield a unified inference procedure, and (iii) possibly leads to narrower confidence intervals when compared with the conventional self‐normalizer. For the proposed time‐symmetric self‐normalizer, we establish the asymptotic theory for its induced inference procedure and examine its finite sample performance through numerical experiments.  相似文献   

14.
Testing Stochastic Cycles in Macroeconomic Time Series   总被引:1,自引:0,他引:1  
A particular version of the tests of Robinson (1994) for testing stochastic cycles in macroeconomic time series is proposed in this article. The tests have a standard limit distribution and are easy to implement in raw time series. A Monte Carlo experiment is conducted, studying the size and the power of the tests against different alternatives, and the results are compared with those based on other tests. An empirical application using historical US annual data is also carried out at the end of the article.  相似文献   

15.
This article develops asymptotic theory for estimation of parameters in regression models for binomial response time series where serial dependence is present through a latent process. Use of generalized linear model estimating equations leads to asymptotically biased estimates of regression coefficients for binomial responses. An alternative is to use marginal likelihood, in which the variance of the latent process but not the serial dependence is accounted for. In practice, this is equivalent to using generalized linear mixed model estimation procedures treating the observations as independent with a random effect on the intercept term in the regression model. We prove that this method leads to consistent and asymptotically normal estimates even if there is an autocorrelated latent process. Simulations suggest that the use of marginal likelihood can lead to generalized linear model estimates result. This problem reduces rapidly with increasing number of binomial trials at each time point, but for binary data, the chance of it can remain over 45% even in very long time series. We provide a combination of theoretical and heuristic explanations for this phenomenon in terms of the properties of the regression component of the model, and these can be used to guide application of the method in practice.  相似文献   

16.
This paper extends the concept of regression and autoregression quantiles and rank scores to a very general nonlinear time series model. The asymptotic linearizations of these nonlinear quantiles are then used to obtain the limiting distributions of a class of L-estimators of the parameters. In particular, the limiting distributions of the least absolute deviation estimator and trimmed estimators are obtained. These estimators turn out to be asymptotically more efficient than the widely used conditional least squares estimator for heavy-tailed error distributions. The results are applicable to linear and nonlinear regression and autoregressive models including self-exciting threshold autoregressive models with known threshold.  相似文献   

17.
In this article, we propose a Bayesian non‐parametric model for the analysis of multiple time series. We consider an autoregressive structure of order p for each of the series and borrow strength across the series by considering a common error population that is also evolving in time. The error populations (distributions) are assumed non‐parametric whose law is based on a series of dependent Polya trees with zero median. This dependence is of order q and is achieved via a dependent beta process that links the branching probabilities of the trees. We study the prior properties and show how to obtain posterior inference. The model is tested under a simulation study and is illustrated with the analysis of the economic activity index of the 32 states of Mexico.  相似文献   

18.
Many time series encountered in practice are non-Gaussian. Because of the process of data collection or the practice or researchers, time series used in analysis and modelling are frequently temporal aggregates. In this paper, we study the effects of the use of aggregate time series on testing for Gaussianity. We analyse how the test statistic is affected by aggregation and how that affects the power of the test. The results show that the use of aggregate time series induces Gaussianity and that the degree of inducement increases with the order of aggregation. In fact, the use of aggregate time series reduces the power of the test, although the effect is not significant for low orders of aggregation.  相似文献   

19.
This paper builds on the existing literature on tests of the null hypothesis of deterministic seasonality in a univariate time-series process. Under the assumption of independent Gaussian errors, we derive the class of locally weighted mean most powerful invariant tests against unit roots at the zero and/or seasonal frequencies in a seasonally observed process. Representations for the limiting distributions of the proposed test statistics under sequences of local alternatives are derived, and the relationship with tests for corresponding moving average unit roots is explored. We also propose nonparametric modifications of these test statistics designed to have limit distributions which are free of nuisance parameters under weaker conditions on the errors. Our tests are shown to contain existing stationarity tests as special cases and to extend these tests in a number of useful directions.  相似文献   

20.
Abstract. A robust estimation procedure for periodic autoregressive (PAR) time series is introduced. The asymptotic properties and the asymptotic relative efficiency are discussed by the estimating equation approach. The performance of the robust estimators for PAR time‐series models with order one is illustrated by a simulation study. The technique is applied to a real data analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号