The d 120 mm ingots of 7050 aluminum alloy were made by low frequency electromagnetic casting (LFEC) and conventional DC casting process, respectively. After homogenization treatment the ingots were extruded to rods and the solution and aging treatment were carried out for the rods. Constituents evolution during processing and effects of LFEC on constituents and remnant constituents were studied. The results show that 7050 aluminum alloy mainly contains Al-Zn-Mg-Cu type and Al-Cu-Fe type constituents. Al-Zn-Mg-Cu type constituents dissolve during homogenization, while Al-Cu-Fe type constituents could not dissolve. After homogenization treatment, the main remnant constituent is A17Cu2Fe which crushes and orients along the extrusion direction after extrusion. Compared with DC process, by the process of LFEC, the constituents or remnant constituents are smaller in size and less in content. The LFEC process shows significant improvement in elongation by LFEC in both as-cast state and final state. 相似文献
The microstructures of 7050 aluminum alloy under different thermal exposure conditions were investigated by means of transmission electron microscopy (TEM), high resolution electron microscopy (HREM) and tensile test. Guinier preston (GP) zone and η′ phase are the main precipitates in original 7050 alloy. The orientation relationship between η′ and matrix is and . When the alloy is exposed at different temperatures for 500 h, with the thermal exposure temperature increasing, it can be seen under TEM that the precipitates become larger and the width of precipitate free zones (PFZ) becomes larger. The higher temperature the alloy is exposed at, the more the strength is reduced. Both GP zones and η′ precipitates getting coarser and the PFZ getting wider should be responsible for the strength decline and elongation rise of 7050 alloy during thermal exposure. 相似文献