首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
风机磨损是工程实际中的突出问题。本文采用高速射流的试验方法来分析风机叶片表面的磨损状况,通过选择不同的耐磨材料,表面加耐磨层或堆焊等耐磨措施,采用不同喷射角下测量试验材料的重量损失来获得相应的耐磨性能,发现了叶片材料磨损与含尘气流速度及碰撞角、与颗粒直径的大小和硬度、与叶片材料的表面特性有关,从而为风机耐磨性能的改善及耐磨风机的开发提供依据。  相似文献   

2.
采用多功能销-盘摩擦磨损试验机,开展铜基粉末冶金/Q235-B摩擦副的摩擦磨损试验,在载流和无载流的工况下,研究接触压力(0.4、0.7、1.0和1.3 MPa)对铜基粉末冶金材料闸片磨损表面形貌的影响。结果表明:在无载流工况下,随着接触压力的增大,摩擦因数和磨损率均缓慢上升,试样表面损伤加剧,粗糙度升高,主要的损伤机制为磨粒磨损和剥层;在载流工况下,0.4 MPa时的摩擦因数和磨损率最大,损伤最严重,粗糙度最高,当接触压力增大到0.7 MPa后,表面形貌损伤的变化趋势与无载流工况一致,磨损机制在磨粒磨损和剥层的基础上增加了电弧烧蚀;载流工况下材料表面的粗糙度普遍高于无载流工况下,表面损伤更为严重。  相似文献   

3.
在不同的旋转速度和进给速度下对AM60B镁合金进行搅拌摩擦加工(FSP),研究FSP对AM60B镁合金微观组织和硬度的影响;研究搅拌摩擦加工之后的AM60B镁合金在不同温度下的摩擦磨损性能,并分析其磨损机制。结构表征结果表明:FSP使AM60B镁合金搅拌区的晶粒细化,热机影响区的晶粒再结晶,热影响区的晶粒变长;随着旋转速度的升高晶粒尺寸增大。摩擦磨损试验结果表明:随着试验温度的升高,FSP处理试样的磨损率增大,摩擦因数增大;1 600 r/min、200 mm/min下的FSP处理试样,在25℃时的磨损率是母材的70%,200℃时的磨损率为母材的95%;25℃下,AM60B镁合金的磨损机制为磨粒磨损和轻微的剥层磨损,FSP处理试样的磨损机制主要是磨粒磨损,而100和200℃下,AM60B镁合金和FSP处理试样磨损机制均为严重的剥层磨损;200℃下,进给速度为200 mm/min,旋转速度为2 400 r/min时,试样表面磨损最严重,进给速度为300 mm/min,旋转速度为2 000 r/min时,试样表面磨损最轻,这可能是由于FSP引起了镁合金的硬度变化,从而影响了耐磨性的变化。  相似文献   

4.
使用环块磨损试验机和表面形貌仪,选用不同摩擦副材料和通过控制磨损距离、载荷以及转速等变量,研究磨损率的变化,验证一种基于Archard磨损计算模型的数值计算方法。结果发现:磨损深度随磨损距离的变化由一开始的迅速增加逐渐变慢,最后趋向于稳定增加;摩擦副材料的改变对磨损率大小的影响十分剧烈;磨损率随着载荷的增大而增大,但二者之间不是简单的线性关系;忽略温度变化的影响时,磨损率与磨损速度的大小无关。实验证明,该计算模型对不同材料、不同载荷的磨损量计算结果,均与实际实验所得的磨损量吻合良好,但在磨痕深度较浅时相对误差较大。  相似文献   

5.
改进MPX-2000摩擦磨损试验机,实现了在线测定材料摩擦磨损性能。实验测定载荷、滑动速度和对偶面粗糙度等工况条件对二硫化铝改性热塑性聚酰亚胺(TPI)基复合材料摩擦磨损性能的影响,结合低真空扫描电子显微镜(FESEM)观察其磨损面形貌的结果分析材料磨损机理。研究表明:在线测定法与传统称重法测定的材料磨损情况基本一致。在线测定结果发现:在材料稳定磨损状况下,随着载荷的增大,材料磨损率增加而摩擦因数降低;随着滑动速度的增大,材料磨损率增加,但其对摩擦因数影响不明显。高速下磨损机理主要是严重的粘着磨损和疲劳磨损:同时发现磨损率与对偶面粗糙度呈非线性关系,经颗粒直径为46um氧化铝砂纸打磨过对偶面,其材料磨损率最低。  相似文献   

6.
采用热压烧结技术制备含4种不同固体润滑剂(MoS_2、h-BN、石墨和Sb_2S_3)的矿用树脂基制动材料。采用环-块式摩擦磨损试验机研究制动材料在不同载荷和速度下的摩擦磨损特性。采用扫描电镜和能谱仪分析材料物相和摩擦表面形貌,探讨其磨损机制。结果表明:含不同固体润滑剂的制动材料具有相似的硬度值,其维氏硬度约为0.60 GPa;在所有试验条件下,随着载荷和速度的增加,四种样品的摩擦因数与磨损率均有所升高,且4种样品均表现出不同程度的黏着磨损、塑性变形与转移膜的形成,其中含固体润滑剂Sb_2S_3的样品存在轻微的犁削和磨粒磨损;4种样品中,含10%(体积分数)石墨的样品表现出最低的摩擦因数与磨损率。  相似文献   

7.
通过分析销-盘滑动摩擦副的受力情况,建立此二者间的磨损模型。在给定销径、载荷、转速、工作时间等条件下,计算出销和盘的各自的磨损率和磨损量以及组合磨损率和组合磨损量。计算结果表明:销、盘工作过程中,二者接触表面各点压力分布在整体上呈现出沿旋转半径增大的方向减小,然而在接近最大旋转半径处,压力略有上翘现象;销各点的磨损率也与旋转半径相关,随着半径增大,其磨损率由大逐渐减少,然后再逐渐增大,因此磨损后的表面形状是一个凸起的拱形;由于需要满足磨损协调条件,盘的各点的磨损率与销磨损相反的趋势,它磨损后的表面是一个环形凹槽,即沿盘的半径方向看,磨损后表面呈反向。  相似文献   

8.
采用粉末冶金工艺,制得铜基摩擦材料;利用MM 1000Ⅱ型摩擦磨损试验机模拟列车实际工况条件,测试其摩擦磨损性能;用扫描电镜观察铜基摩擦材料表面磨痕,并分析其磨损机制。结果表明:一定制动压力下,铜基摩擦材料摩擦因数和磨损率均随着制动速度的增加先升高后降低,150 km/h时制动性能最好,250~300 km/h时制动性能最为稳定;制动速度一定时,随着制动压力的增加,摩擦因数先升高后降低,磨损率增大并趋于稳定,04 MPa时摩擦因数最大,08~10 MPa时制动性能比较稳定;铜基摩擦材料在高速制动工况下的磨损机制主要为磨粒磨损和疲劳磨损。  相似文献   

9.
杨杰 《润滑与密封》2017,42(2):56-60
基于HSR-2M高速往复摩擦磨损试验机,试验研究在永磁体磁场条件下,法向载荷、往复速度等参数对钢轨材料摩擦性能的影响,通过磨痕形貌分析其磨损机制,并与无磁场条件下的结果进行对比。试验结果表明:磁场的引入可以在一定程度上减小钢轨材料的摩擦因数、磨损率;增大滑动速度对摩擦因数和磨损率均有减小作用,增大载荷能够降低摩擦因数,但磨损率增加;磁场能够提高钢轨材料在摩擦过程中的磨损性能。无磁场时,钢轨材料磨损形式为典型的磨粒磨损,摩擦系统的磨损率和摩擦因数较大;有磁场时,磨损形式主要为黏着磨损,摩擦因数和磨损率较小。  相似文献   

10.
碳纤维增强聚醚醚酮PEEK450 FC30与工程陶瓷SiC软硬组合作为海水柱塞泵关键摩擦副备选材料,利用MCF 10摩擦磨损试验机对其在海水润滑下的摩擦磨损特性进行试验研究,探讨接触压力、滑动转速对材料磨损率和摩擦系数的影响规律。试验结果表明:在一定范围内的滑动速度、接触压力下,该摩擦副呈现出较小的磨损率和摩擦系数。当滑动速度在0.5~1.5 m/s之间,接触压力为1.33 MPa时,磨损率最小。通过扫描电子显微镜观察摩擦副磨损表层发现,在海水润滑下,SiC磨损并不明显,而PEEK450 FC30的磨损主要是以塑性涂抹为特征的粘着和SiC表面粗糙峰引起的机械犁耕。研究结果对水液压元件的选材具有十分重要的指导作用。  相似文献   

11.
煤矿中的采掘机械和运输机械都存在着严重的磨损问题,其中许多情况涉及橡胶材料,而目前国内外对橡胶材料在煤粉条件下的摩擦磨损特性尚缺乏研究,因此有必要对丁腈橡胶在干煤粉条件下的磨料磨损进行研究。用扫描电镜(SEM)观察丁腈橡胶磨损后的表面形貌,发现其磨损机理为磨粒磨损,通过磨损试验发现其磨损率随着法向载荷的增大而增大,随着旋转速度的增大而减小。  相似文献   

12.
利用低温环境轮轨磨损模拟试验装置,研究了高速铁路车轮材料在室温及低温环境下的滚动接触疲劳损伤行为。结果表明:低湿度的低温环境导致车轮材料磨损率、塑性变形及疲劳损伤较室温下明显加重。随试验温度的降低,轮轨摩擦因数、磨损率及表面硬度均呈现先急剧上升后轻微下降趋势。室温工况下磨痕表面有严重的犁沟现象,而低温工况下车轮试样表面以疲劳裂纹及剥落损伤为主。随着温度的降低,磨损形式由氧化磨损、磨粒磨损逐渐向疲劳及粘着磨损转变。车轮材料裂纹主要沿较软的铁素体线扩展,室温下剖面损伤较轻微。低温工况下由于车轮材料发生脆化,珠光体呈现不同于室温下的形貌及分布特性。在低温下,表层裂纹扩展角度及次表层裂纹长度增加,同时表层裂纹易于汇合并产生分支。  相似文献   

13.
采用MPX2000型摩擦磨损试验机测定5μm和20μm实心玻璃微珠填充热塑性聚酰亚胺复合材料在干摩擦和水润滑两种工况下的摩擦磨损性能,考察了填料含量及尺度的影响。结合扫描电子显微镜(SEM)观察磨损表面形貌分析磨损机制。结果表明:在干摩擦条件下,玻璃微珠在磨损表面富集,起到了良好的承载作用,并以其优异的导热性能和耐高温性能强化了摩擦热的移出,材料磨损率下降1个数量级;大尺寸填料,其单位个体与基体的界面面积和结合强度大于小尺寸填料,其磨损率比小尺度填料填充材料低。在水润滑条件下,水起到冷却及边界润滑作用,材料磨损率较干摩擦条件下降低1个数量级,以疲劳磨损为主;同时,球形颗粒出现应力集中产生疲劳裂纹的程度随颗粒尺度增大而提高,表现为20μm玻璃微珠填充材料磨损率较大。  相似文献   

14.
陶瓷材料磨损机制及磨损程度评价方法综述   总被引:1,自引:0,他引:1  
综合分析陶瓷材料摩擦磨损的机制和影响摩擦磨损的各种因素,如表面加工状况、载荷、速度、时间、温度、润滑等。介绍几种陶瓷材料摩擦磨损程度的评定方法,如用量纲一化参数(最大赫兹接触压力、最大表面粗糙度和断裂韧性的函数Sc,硬度、最大表面粗糙度和断裂韧性的函数S*)大小评价磨损程度,用磨损表面的粗糙度Ry与平均粒径Dg的比值评价陶瓷材料磨损程度,用磨损率评价陶瓷材料磨损程度等。以期指导人们进一步认识陶瓷摩擦磨损的本质规律,有目的地调整材料的性能以提高其耐磨性。  相似文献   

15.
研究了无润滑条件下Si3N4陶瓷-白口铸铁磨擦副的磨损机理,通过对磨损表面的形貌分析和化学成分测试,发现粘附磨损和疲劳磨损是这一摩擦副磨损的主要形式,通过对试验数据进行回归分析,得知载荷对摩擦副磨损率的影响远大于速度对其的影响。  相似文献   

16.
对热型连续定向凝固工艺生产的Cu-0.1Ag合金进行干滑动摩擦磨损实验并将该材料与耐磨性较好的单晶铜进行对比实验。分析讨论载荷、滑动速度等因素对该材料磨损率及磨损表面的影响。实验结果表明:滑动距离、滑动速度对铜合金的磨损有较大影响,而且铜合金的抗磨性能明显优于耐磨性较好的单晶铜。  相似文献   

17.
刘中华  刘政  杜慧杰 《润滑与密封》2022,47(10):176-184
磁浮列车中部分制动闸片在服役时一直处于受流状态,导致材料磨损加剧,影响闸片的服役寿命。为研究中低速磁悬浮列车制动闸片在受流工况下的摩擦磨损性能,以制动闸片使用的铜基粉末冶金材料和刹车盘使用的Q235B材料为摩擦副,研究不同制动速度下铜基粉末冶金/Q235B摩擦副的载流摩擦磨损行为。结果表明:无电流时随着滑动速度的增大,摩擦因数及磨损率整体呈现下降的趋势,载流时随着滑动速度的增大,摩擦因数整体呈现下降的趋势,而磨损率则整体呈现上升的趋势;无电流时磨损后的铜基粉末冶金材料表面覆盖着一层靛色的第三体层,该第三体层低速时主要以颗粒状为主,随着速度的增加逐渐被压实成连续致密状,高速时因黏着磨损加剧使得连续致密状第三体被破环,导致材料的摩擦因数和磨损率呈现反向增长的趋势;载流下磨损后的铜基粉末冶金材料表面出现了以机械磨损为主和以电弧烧蚀为主的2个区域,其中以机械磨损为主的区域依然是由靛色的第三体层组成,而以电弧烧蚀为主的区域表面则覆盖了一层金色熔融状物质,并且随着速度的增大,烧蚀区面积也逐渐增大。  相似文献   

18.
自润滑向心关节轴承磨损寿命模型   总被引:5,自引:0,他引:5  
以摩擦副为钢/PTFE编织物的自润滑向心关节轴承为研究对象,从磨损机理出发,基于组合磨损理论和稳定磨损中线磨损率保持不变的特征,通过对复合摆动条件下向心关节轴承的运动分析、接触和速度分析、受力分析、磨损量分析,进而推导出新的解析式寿命模型,可分别计算旋转摆动、倾斜摆动以及复合摆动三种摆动方式下的自润滑向心关节轴承磨损寿命,并提出其计算方法。通过算例计算,得出不同工况三种摆动方式下自润滑向心关节轴承磨损寿命比,与已有理论计算结果和试验结果相近,尤其在复合摆动工况下与已有理论计算值相差更小,相对误差小于6%。新建模型为向心关节轴承提供了一种新的寿命计算方法,可以弥补现有寿命计算公式大多仅考虑旋转摆动工况的不足。  相似文献   

19.
为探讨CM550复合耐磨板用于煤矿刮板输送机中部槽的可行性,结合刮板输送机中部槽的磨损运动特征,研究CM550高铬堆焊耐磨层的组织结构和磨损性能,并分析其磨损损伤机制。金相、XRD和TEM组织结构分析表明,高铬堆焊层与Q235基体之间形成冶金熔合,堆焊层的相组成主要为α-Fe和Cr7C3碳化物,其中碳化物以初生棒状、共晶片状和粒状二次碳化物的形式存在。滑动磨损实验结果表明,在相同的摩擦因数条件下,CM550耐磨板的相对耐磨性是NM450耐磨钢的2倍以上,摩擦副材料的磨损质量损失也处于相同水平。石英砂磨料磨损的损伤主要来自硬石英砂颗粒的微切削磨损和软质铁素体区的变形剥落磨损,铁素体磨损暴露于磨损表面的硬质碳化物承担了主要的磨损载荷,阻止了石英砂磨料与软铁素体的直接接触,减轻了铁素体的进一步磨损,有效提高了耐磨性。因此,CM550高铬堆焊耐磨板可推荐为刮板输送机中部槽和煤矿各种耐磨衬板制造的耐磨材料。  相似文献   

20.
研究了无润滑条件下 Si3N4陶瓷 -白口铸铁磨擦副的磨损机理。通过对磨损表面的形貌分析和化学成分测试 ,发现粘附磨损和疲劳磨损是这一摩擦副磨损的主要形式 ;通过对试验数据进行回归分析 ,得知载荷对摩擦副磨损率的影响远大于速度对其的影响  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号