首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
牛利刚 《电子与封装》2009,9(12):30-33,40
在微电子封装器件的生产或使用过程中,由于封装材料热膨胀系数不匹配,不同材料的交界处会产生热应力,热应力是导致微电子封装器件失效的主要原因之一。文章采用MSC.Marc有限元软件,分析了QFN器件在回流焊过程中的热应力、翘曲变形、主应力及剪应力,并由析因实验设计得到影响热应力的关键因素。研究表明:在回流焊过程中,QFN器件的最大热应力出现在芯片与粘结剂接触面的边角处;主应力和剪切应力的最大值也出现在芯片与粘结剂连接的角点处,其值分别为21.42MPa和-28.47MPa;由析因实验设计可知粘结剂厚度对QFN热应力的影响最大。  相似文献   

2.
在微电子封装器件的生产或使用过程中,由于封装材料热膨胀系数不匹配,不同材料的交界处会产生热应力.热应力是导致微电子封装器件失效的主要原因之一。采用MSC.Marc有限元软件.分析了QFN器件在回流焊过程中的热应力、翘曲变形、主应力及剪应力,并由析因实验设计得到影响热应力的关键因素。研究表明:在回流焊过程中,QFN器件的最大热应力出现在芯片与粘结剂接触面的边角处:主应力和剪切应力的最大值也出现在芯片与粘结剂连接的角点处.其值分别为21.42MPa和-28.47MPa:由析N实验设计可知粘结剂厚度对QFN热应力的影响最大。  相似文献   

3.
在微电子封装器件的生产或使用过程中,由于封装材料热膨胀系数不匹配,不同材料的交界处会产生热应力,热应力是导致微电子封装器件失效的主要原因之一。本文采用MSC.Marc有限元软件,分析了QFNN件在回流焊过程中的热应力、翘曲变形、主应力及剪应力,并由析因实验哼殳计得到影响热应力的关键因素。研究表明:在回流焊过程中,QFN器件的最大热应力出现在芯片与粘结剂接触面的边角处;主应力和剪切应力的最大值也出现在芯片与粘结剂连接的角点处,其值分别为21.42MPa和-28.47MPa;由析因实验设计可知粘结剂厚度对QFN热应力的影响最大。  相似文献   

4.
采用湿度敏感度评价试验及湿-热仿真方法,分析了温湿度对于QFN封装分层失效的影响.通过C-SAM和SEM等观察发现,QFN存在多种分层形式,分层大多发生在封装内部材料的界面上,包括封装塑封材料和芯片之间的界面、塑封材料和框架之间的界面等.此外,在封装断面研磨的SEM图像上发现芯片粘结剂内部有空洞出现.利用有限元数值模拟的方法,对QFN封装的内部湿气扩散、回流过程中的热应力分布等进行了模拟,分析QFN分层失效的形成原因.结果表明,由于塑封器件材料、芯片、框架间CTE失配,器件在高温状态湿气扩散形成高气压条件下易产生分层.最后提出了改善QFN分层失效的措施.  相似文献   

5.
对四层叠层CSP(SCSP)芯片封装器件,采用正交试验设计与有限元分析相结合的方法研究了芯片和粘结剂——8个封装组件的厚度变化在热循环测试中对芯片上最大热应力的影响.利用极差分析找出主要影响因子并对封装结构进行优化。根据有限元模拟所得结果.确定了一组优选封装结构,其Von Mises应力值明显比其它组低,提高封装器件的可靠性。  相似文献   

6.
利用动态机械分析仪测定环氧模塑封(EMC)材料随温度变化的杨氏模量;使用热机械分析仪测定EMC随温度变化的尺寸变化量,并拟合得到热膨胀系数。在实验数据的基础上,变动EMC的橡胶态杨氏模量、玻璃态杨氏模量、玻璃转化温度以及热膨胀系数,并使用有限元软件MSC Marc分别模拟其热应力,以此来分析材料特性参数对热应力的影响。结果表明:QFN器件的最大热应力出现在芯片、粘结剂和EMC的连接处;减小橡胶态或玻璃态的杨氏模量可以有效地减小热应力;增大玻璃转化温度或热膨胀系数,QFN器件的热应力都会有所增加。  相似文献   

7.
引进内聚力模型(CZM)法,利于有限元软件MSC.Marc对热冲击栽荷下QFN器件各材料界面之间的脱层开裂情况进行了研究。并分析了不同Diepad厚度对器件脱层失效的影响。结果表明:脱层开裂均发生在各个界面的两端,并逐渐沿着界面向里扩展,Diepad与芯片粘结剂之间的界面最容易发生脱层开裂;Diepad厚度对器件的脱层开裂影响较大,增加Diepad厚度能较大幅度的提高QFN器件的抗脱层开裂能力。  相似文献   

8.
采用有限元方法,建立了功率器件封装的三维有限元模型,分析了封装体的温度场和应力场,讨论了芯片粘贴焊层厚度、空洞等因数对大功率器件封装温度场和应力场的影响.有限元结果表明,封装体的最高温度为73.45℃,位于芯片的上端表面,焊层热应力最大值为171 MPa,出现在芯片顶角的下面位置.拐角空洞对芯片最高温度影响最大,其次是中心空洞.空洞沿着对角线从中点移动到端点,芯片最高温度先减小后增加.焊层最大热应力出现在拐角空洞处,最大值为309 MPa.最后分析了芯片粘贴工艺中空洞形成的机理,并根据有限元分析结论对工艺的改善优化提出建议.  相似文献   

9.
应用有限元方法分析了QFN形式的SiP封装器件在回流焊中的热应力与湿热合成应力。结果表明,在回流焊过程中,由于其结构特点与湿气的扩散不均引起湿热应力变化梯度加大,在其材料交界处应力集中现象明显。最大湿热应力是单纯考虑热应力的情况1.66倍左右。通过比较得知湿热环境对这种SiP器件的影响比一般的封装器件要大,更可能导致器件失效。  相似文献   

10.
利用有限元分析方法对SCSP器件内部粘结剂的溢出问题进行了研究.对粘结剂不同溢出高度的模型进行有限元建模分析,模拟结果能很好地和实验结果相吻合.为了有效减少由热应力引发产生的分层,模拟得到了粘结剂溢出高度的最佳控制范围.  相似文献   

11.
有限元方法对SCSP粘结剂溢出问题的研究   总被引:3,自引:1,他引:3  
利用有限元分析方法对SCSP器件内部粘结剂的溢出问题进行了研究.对粘结剂不同溢出高度的模型进行有限元建模分析,模拟结果能很好地和实验结果相吻合.为了有效减少由热应力引发产生的分层,模拟得到了粘结剂溢出高度的最佳控制范围.  相似文献   

12.
采用有限元软件,在热循环加载条件下,对四角扁平无引脚封装(QFN,Quad Flat No-lead Package)器件进行了热疲劳可靠性分析。选取PCB焊盘长度等几个因素作为灵敏度分析的输入变量,热疲劳寿命作为输出变量。结果表明:影响QFN器件热疲劳寿命的主要因素依次是焊盘长度、焊盘宽度和焊盘弹性模量等,其灵敏度值分别为:–6.4848×10–1,6.0606×10–1和6.0000×10–1等。提出了提高QFN器件可靠性的方法。  相似文献   

13.
晶圆尺寸级封装(WLCSP)器件的尺寸参数和材料参数都会对其可靠性产生影响。使用有限元分析软件MSCMarc,对EPS/APTOS生产的WLCSP器件在热循环条件下的热应力及翘曲变形情况进行了模拟,分析了器件中各个尺寸参数对其热应力及翘曲变形的影响。结果表明:芯片厚度、PCB厚度、BCB厚度和上焊盘高度对WLCSP的热应力影响较为明显。其中,当芯片厚度由0.25mm增加到0.60mm时,热应力增加了21.60MPa;WLCSP的翘曲变形主要受PCB厚度的影响,当PCB厚度由1.0mm增加到1.60mm时,最大翘曲量降低了20%。  相似文献   

14.
采用通用有限元软件MSC.Marc,模拟分析了一种典型的多层超薄芯片叠层封装器件在经历回流焊载荷后的热应力及翘曲分布情况,研究了部分零件厚度变化对器件中叠层超薄芯片翘曲、热应力的影响。结果表明:在整个封装体中,热应力最大值(116.2 MPa)出现在最底层无源超薄芯片上,结构翘曲最大值(0.028 26 mm)发生于模塑封上部边角处。适当增大模塑封或底层无源芯片的厚度或减小底充胶的厚度可以减小叠层超薄芯片组的翘曲值;适当增大底层无源超薄芯片的厚度(例如0.01 mm),可以明显减小其本身的应力值10 MPa以上。  相似文献   

15.
由于PBGA器件中各材料热膨胀系数有差异,固化后易产生翘曲变形。采用有限元模拟法对PBGA器件的EMC封装固化和后固化过程进行了分析。结果表明:固化过程是影响翘曲的关键过程,残余应力增加,翘曲变形有所增加。如固化后最大残余应力为95.24MPa,翘曲位移为0.1562mm;后固化以后最大残余应力为110.3MPa,翘曲位移为0.1674mm,翘曲位移增加值仅为0.0112mm。适当增加硅粉填充剂的含量,可以减小固化工艺后的翘曲变形。  相似文献   

16.
热应力影响下SCSP器件的界面分层   总被引:1,自引:1,他引:0  
通过有限元方法研究了堆叠芯片尺寸封装(SCSP)器件在回流焊工艺过程中的热应力分布,采用修正J积分方法计算其热应力集中处应变能释放率。结果表明:堆叠封装器件中最大热应力出现在Die3芯片悬置端。J积分最大值出现在位于Die3芯片的上沿与芯片粘结剂结合部,达到1.35×10–2J/mm2,表明该位置的裂纹处于不稳定状态;在Die3芯片下缘的节点18,19和顶层节点27三个连接处的J积分值为负值,说明该三处裂纹相对稳定,而不会开裂处于挤压状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号