首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
SnO2掺杂ZnO-Nb2O5-TiO2微波介质陶瓷   总被引:1,自引:0,他引:1  
研究了 SnO_2对 ZnO-Nb_2O-5-TiO_2陶瓷相结构和微波介电性能的影响。随 Sn 添加量的增加,晶相组成逐步从(Zn_(0.15)Nb_(0.30)Ti_(0.55))O2相转变为 ZnTiNb_2O_8相,相对介电常数 ?r减少,?f向负频率温度系数方向移动, 当 Sn 含量增加到0.20,?f可降至 9.8×10–6℃–1。当 SnO2的摩尔比 y 为 0~<0.08 时,形成完全固溶体,提高 Q·f 值;当 y>0.08,部分Sn 形成第 2 相,降低其 Q·f 值。当 y 为 0.08,在 1 150℃烧结,具有很好的微波介电性能,其 ?r为 50.3,Q·f 为 14 892GHz,?f为 25.12×10-6℃–1。  相似文献   

2.
采用固相法在880~975℃下烧结制备了添加w(CuO)为2.00%,w(B2O3)为3.00%及w(SnO2)为0.15%的ZnNb2O6-1.75TiO2基复合微波介质陶瓷。研究了该陶瓷的低温烧结机理、微波介电性能及其在多层片式陶瓷电容器中的应用。结果显示:随着烧结温度的提高,物相由Zn2TiO4,Zn0.17Nb0.33Ti0.5O2,ZnNb2O6向ZnTiNb2O8转变,εr和τf减小,Q·f升高。但当t≥975℃时,出现过烧现象,晶体缺陷增多恶化了材料的Q·f。在950℃烧结4h时,得到最好的介电性能:εr=36.7,τf=–22.6×10–6/℃,Q·f=18172.2GHz。且在此温度下制备的多层片式陶瓷电容与内电极Ag90Pd10的兼容性良好,Res为0.3426Ω,tanδ为9×10–5,可靠性良好。  相似文献   

3.
TiO_2对BLT微波介质陶瓷结构及介电性能的影响   总被引:1,自引:1,他引:0  
采用传统固相烧结工艺制备了BaO-La2O3-nTiO2(n为3,4,5和6)微波介质陶瓷,研究了该系陶瓷的相组成、微观形貌和微波介电性能之间的关系。结果表明:该系陶瓷具有较优介电性能的主晶相为斜方晶系BaLa2Ti4O12,并且第二相的存在对其介电性能影响明显。烧结体致密性是Q·f及τf的重要影响因素。当n为4时,获得相对较优的介电性能:εr为139.7,Q·f为1239.0GHz和τf达180.0×10–6℃–1。  相似文献   

4.
利用常规固相法制备了[(1–x)LaAlO3-xCaTiO3]+yCeO2陶瓷(y为CeO2的质量分数),研究了预烧工艺和CeO2添加剂对所制陶瓷微波介电性能的影响。结果表明,LaAlO3与CaTiO3一次预烧能获得较好的微波介电性能,CeO2添加剂能有效提高材料的烧结性能和微波介电性能。(0.4LaAlO3-0.6CaTiO3)+0.2%CeO2陶瓷经1 450℃烧结5 h后能获得最佳微波介电性能:εr=43.1、Q·f=29 700 GHz、τf=–2.4×10–6/℃。  相似文献   

5.
采用传统固相工艺制备了Ba3.99Sm9.34Ti18O54(BSTO)微波介质陶瓷,研究了烧结助剂CuO对BSTO的结构及介电性能的影响。结果表明,添加CuO能较好促进BSTO晶粒致密化,降低烧结温度约140℃。当添加质量分数1.0%的CuO时,1220℃保温3h烧结的BSTO样品的介电性能较好:εr=86.87,Q·f=5138GHz(f=4.95GHz),τf=–10.84×10–6℃–1。  相似文献   

6.
采用固相反应法,在0.92MgTiO3-0.08CaTiO3配比的基础上,制备了不同Mg2SiO4添加量的MgO-TiO2-CaO-SiO2复合陶瓷体系,研究了Mg2SiO4添加量对其物相结构、微观形貌及微波介电性能的影响。结果表明,体系中不存在杂相,其致密化烧结温度随Mg2SiO4添加量的增加而提高,添加适量Mg2SiO4能够降低体系的εr和谐振频率温度系数τf。当添加质量分数为35%的Mg2SiO4,体系在1360℃烧结2h可获得优异的微波介电性能:εr=15.5,Q·f=42640GHz(6GHz),τf=–13×10–6/℃。  相似文献   

7.
研究了Zr和Ti复合取代Ca[(Li1/3Nb2/3)0.95Zr0.15-xTix]O3+δ(0≤x≤0.15,CLNZT)陶瓷B位对其晶体结构及微波介电性能的影响,并分析了谐振频率温度系数τf随容忍因子t的变化关系。当0≤x≤0.15时,CLNZT陶瓷为单一斜方钙钛矿相,随x的增加,τf由–9.4×10–6/℃变为–15.8×10–6/℃,而品质因数与谐振频率乘积Q·f值先增大,x=0.10时又开始下降。当x=0.10时,陶瓷具有较好的微波介电性能:εr为32.8,Q·f值为1.66×104GHz,τf为–13.6×10–6/℃。  相似文献   

8.
采用XRD及SEM研究(Ca0.61Nd0.26)TiO3对微波介质陶瓷Ba4Sm9.33Ti18O54的结构和微波介电性能的影响。获得了一些性能较好的微波介质陶瓷(1–x)Ba4Sm9.33Ti18O54-x(Ca0.61Nd0.26)TiO3,其微波介电性能如下:εr=75,Q·f为8985GHz,τf为–8.2×10–6℃–1(x?=0);εr为75,Q·f为9552GHz,τf为–14.4×10–6℃–1(x?=0.2)。  相似文献   

9.
以MgCO3、ZnO和TiO2为原料,用固相反应法制备了(Mg1–xZnx)TiO3(MZT)系陶瓷。研究了ZnO含量对其微观结构和微波介电性能的影响。结果表明:添加适量ZnO,可有效降低烧结温度,拓宽烧结温度范围。当x(ZnO)为30%,烧结温度为1250℃时,MZT陶瓷具有优良微波介电性能,εr为16~18,Q·f为90000GHz,τc为–5.1×10–7℃–1。  相似文献   

10.
B-Zn复合掺杂的LNT微波介质陶瓷的低温烧结   总被引:1,自引:1,他引:0  
研究了烧结助剂B2O3、ZnO对Li0.925Nb0.375Ti0.8O3(LNT)陶瓷烧结特性及介电性能的影响。结果表明:B2O3-ZnO复合掺杂能有效降低烧结温度至900℃。ZnO的添加调节了LNT陶瓷正的频率温度系数,质量分数为1%的B2O3和4%的ZnO是最佳添加量,可得到εr为59.5,Q·f为7840GHz,τf为0×10–6℃–1的微波介质陶瓷材料。  相似文献   

11.
采用传统电子陶瓷制备方法研究了Co2O3(1.5%~5.0%,质量分数)掺杂的0.965MgTiO3-0.035SrTiO3(MST0.035)微波介质陶瓷,分析了Co2O3含量对MST0.035陶瓷的烧结性能、晶相结构、显微形貌以及微波介电性能的影响。结果表明:Co2O3的掺杂促进了MST0.035陶瓷的烧结。随着Co2O3掺杂量的增加,陶瓷介电常数略有下降,谐振频率温度系数以及品质因数增加,同时中间相MgTi2O5逐渐减少直至完全消失。当Co2O3掺杂量为质量分数3.0%时,MST0.035陶瓷的烧结温度由1 380℃降低到1 290℃,其烧结所得的样品具有优良的微波介电性能:谐振频率温度系数τf=–2.53×10–6/℃,高的品质因数Q·f=19 006 GHz和介电常数εr=20.5。  相似文献   

12.
以Ba4Sm9.33Ti18O54微波介质陶瓷为基础,掺杂Lu2O3进行改性,形成固溶式为Ba4(Sm1–yLuy)9.33Ti18O54的结构。结果表明,掺杂Lu2O3能很好地把Ba4Sm9.33Ti18O54微波介质陶瓷的烧结温度降至1 260℃,当y=0.05时Ba4Sm9.33Ti18O54为类钨青铜结构,能得到介电性能较佳的微波介质陶瓷:4.33GHz时εr约为76,Q.f约为2532,τf为–42×10–6/℃;y<0.5时生成了类钨青铜结构晶相,y≥0.5主晶相变成烧绿石相,不具备介电性。  相似文献   

13.
采用Ba-Bi复合掺杂对Y2O3·2TiO2微波介质陶瓷进行改性,以降低其烧结温度并改善其介电性能。在固定Bi2Ti2O7掺杂量为质量分数8%的基础上,研究了BaCO3掺杂量对陶瓷微结构、烧结性能和介电性能的影响。结果表明:当w(BaCO3)为1%时,在较低的烧结温度(约1280℃)下保温2h制备了一种新型中介电常数Y2O3·2TiO2微波介质陶瓷。该陶瓷具有较好的介电性能:在1MHz下,εr≈72.5,tanδ≈2.5×10-3;在微波频率(5.03GHz)下,εr=72.1,Q·f值为2241.0GHz。  相似文献   

14.
掺杂Li_2CO_3低温烧结ZnO-TiO_2系介质陶瓷的研究   总被引:1,自引:0,他引:1  
用传统工艺合成了Li2CO3掺杂的ZnO-TiO2系微波介质陶瓷,系统研究了其烧结行为、显微结构和介电性能。结果表明:掺杂质量分数1%的Li2CO3可使ZnO-TiO2陶瓷的烧结温度从1100℃降到980℃;掺杂3%Li2CO3时,在950℃保温2h烧结,于6~8GHz测试试样的介电性能为:εr约为20,Q·f约为40000GHz,τf约为–14×10–6℃–1。  相似文献   

15.
为了使微波介电陶瓷在厘米波段获得应用,采用固相法制备了低εr、高Q·f值的(1–x)CaWO4-xMg2SiO4(x=0~1.0)介电陶瓷,并添加质量分数为5%的TiO2调节其τf。研究了其晶相结构和微波介电性能。结果表明,x≤0.2时,Mg2SiO4和CaWO4形成不完全固溶体;x=0.2时,在1300℃烧结2h所制得的陶瓷具有优良的微波介电性能:εr=9.58,Q·f=56400GHz,τf=–8.2×10–6/℃,并采用该材料制作了f0=5.4909GHz,插入损耗小于1.1dB,外形尺寸为5.0mm×2.5mm×4.0mm的两级片式介质带通滤波器。  相似文献   

16.
采用传统固相反应法制备了BiVO_4掺杂的Ba_3Ti_5Nb_(5.84)Ta_(0.16)O_(28)陶瓷,研究了所制陶瓷的烧结性能、介电性能以及结构。BiVO_4的添加使Ba_3Ti_5Nb_(5.84)Ta_(0.16)O_(28)陶瓷的烧结温度从1275℃显著降低到了900℃,介电常数及介电损耗略有提高。其中,掺杂有5.0%(质量分数)BiVO_4的Ba_3Ti_5Nb_(5.84)Ta_(0.16)O_(28)陶瓷在950℃保温烧结3h后具有较好的微波介电性能:ε_r=31.5,Q·f=4338GHz,τf=36.2×10~(–6)/℃。  相似文献   

17.
0.95MgTiO_3-0.05CaTiO_3微波介质陶瓷的低温烧结   总被引:1,自引:1,他引:0  
研究了BaCu(B2O5)(BCB)和ZnO复合掺杂对0.95MgTiO3-0.05CaTiO3(95MCT)微波介质陶瓷烧结性能和介电性能的影响,并采用XRD和SEM观察其晶相结构及微观形貌。结果表明:复合掺杂BCB和ZnO能使95MCT陶瓷的烧结温度由1400℃降低至1050℃,可实现与Cu共烧,且ZnO掺杂能有效抑制MgTi2O5第二相的形成。复合掺杂质量分数为3.00%BCB和1.00%ZnO的95MCT陶瓷在1050℃烧结3h,获得较好的介电性能:εr=20.5,Q·f=21133GHz,τf=–10.1×10–6/℃(7GHz)。  相似文献   

18.
采用固相反应法制备了(1-y)(Mgo.7Zn0.3)1-xCoxTiO3-yCaTiO3(MZCCT)(x=0~0.2,Y=0.03~0.09)微波介质陶瓷.研究了Co和Ca掺杂对所制陶瓷的相结构、烧结性能和介电性能的影响.Co掺杂后,MZCCT陶瓷的密度增大,Q·f值从90 000 GHz提高到152 000 GH...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号