首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two poliovirus-susceptible transgenic mouse (Tg PVR) strains, Tg1 and Tg21, were compared with the monkey test for their sensitivity to neurovirulence of live oral poliovirus vaccine (OPV). Intracerebral (i.c.) and intraspinal (i.s.) routes of inoculation were investigated to determine the most suitable combination of mouse strain and route. Evaluation of the mouse tests was performed using several indicators; clinical score and failure time were selected as the most efficient. Tg1 and Tg21 mice inoculated i.s. with type 2, and Tg21 mice inoculated i.s. with type 3 OPV were determined to be the most appropriate systems, whereas they are shown not to be suitable for type 1 OPV. The sensitivity of each of the two mouse models was at least equal to that of the monkey test, suggesting that these mouse systems might be considered as a potential replacement for the monkey test of OPV. However, more data are needed to establish regulatory criteria of acceptability for vaccine lots tested in Tg PVR mice. This is the first study conducted with Tg PVR mice with all three types of poliovirus vaccine preparations.  相似文献   

2.
Although the initial site of poliovirus replication in humans is the intestine, previously isolated transgenic mice which carry the human poliovirus receptor (PVR) gene (TgPVR mice), which develop poliomyelitis after intracerebral inoculation, are not susceptible to infection by the oral route. The low levels of PVR expressed in the TgPVR mouse intestine might explain the absence of poliovirus replication at that site. To ascertain whether PVR is the sole determinant of poliovirus susceptibility of the mouse intestine, we have generated transgenic mice by using the promoter for rat intestine fatty acid binding protein to direct PVR expression in mouse gut. Pvr was detected by immunohistochemistry in the enterocytes and M cells of transgenic mouse (TgFABP-PVR) small intestine. Upon oral inoculation with poliovirus, no increase in virus titer was detected in the feces of TgFABP-PVR mice, and no virus replication was observed in the small intestine, although poliovirus replicated in the brain after intracerebral inoculation. The failure of poliovirus to replicate in the TgFABP-PVR mouse small intestine was not due to lack of virus binding sites, because poliovirus could attach to fragments of small intestine from these mice. These results indicate that the inability of poliovirus to replicate in the mouse alimentary tract is not solely due to the absence of virus receptor, and other factors are involved in determining the ability of poliovirus to replicate in the mouse gut.  相似文献   

3.
Genomic amplification followed by selective digestion of restriction enzymes was used to differentiate polioviruses. The method was based on conserved and variable components of the 5'-noncoding region. The differences between Sabin vaccine and wild-type viruses made it possible to identify rapidly an isolated poliovirus as vaccine-related or wild-type virus. A total of 60 isolates and strains were tested and all of them were correctly identified. This method is recommended as a sensitive, specific and rapid way to differentiate polioviruses in clinical isolates and environmental samples.  相似文献   

4.
Recombinant polioviruses expressing foreign antigens may provide a convenient vaccine vector system to induce protective immunity against diverse pathogens. Replication-competent chimeric viruses can be constructed by inserting foreign antigenic sequences within the poliovirus polyprotein. When inserted sequences are flanked by poliovirus protease recognition sites the recombinant polyprotein is processed to mature and functional viral proteins plus the exogenous antigen. It previously has been shown that poliovirus recombinants can induce antibody responses against the inserted sequences but it is not known whether poliovirus or vaccine vectors derived from it can elicit effective cytotoxic T lymphocyte (CTL) responses. To examine the ability of the recombinant poliovirus to induce CTL responses, a segment of the chicken ovalbumin gene, which includes the H2-Kb-restricted CTL epitope SIINFEKL, was cloned at the junction of the P1 and P2 regions. This recombinant virus replicated with near wild-type efficiency in culture and stably expressed high levels of the ovalbumin antigen. Murine and primate cells infected with the recombinant virus appropriately processed the SIINFEKL epitope and presented it within major histocompatibility complex class I molecules. Inoculation of mice with recombinant poliovirus that expresses ovalbumin elicits an effective specific CTL response. Furthermore, vaccination with these recombinant poliovirus induced protective immunity against challenge with lethal doses of a malignant melanoma cell line expressing ovalbumin.  相似文献   

5.
6.
In susceptible mouse strains, the wild-type Daniel's (wt-DA) strain of Theiler's murine encephalomyelitis virus induces a persistent central nervous system (CNS) infection with chronic demyelination. The virus is cleared from resistant mice with no resulting demyelination. We characterized the role of the DA L* protein in late demyelination and persistent infection. The DA genome has two alternative reading frames, encoding the virus polyprotein and L*, respectively. The mutant virus DAL*-1 fails to synthesize L* and does not persist in the CNS of wt-DA-susceptible SJL/J or B10.S mice. Since class I-restricted cytotoxicity has been shown to determine resistance to virus persistence and demyelination in this model, virus-specific cytotoxicity in the CNS of DA-resistant (B6 or B10) and -susceptible (SJL/J and B10.S) mice during the acute stage of DA and DAL*-1 infection was characterized. Following intracerebral inoculation with DAL*-1, virus-specific Db- and Kb-restricted CTLs were demonstrated in the CNS of resistant B10 mice, whereas only Db-restricted CTL were found in wt-DA-inoculated mice. CTLs specific to wt-DA or DAL*-1 recognized class I-presented peptides from either of the viruses. Of particular interest, Ks-restricted virus-specific cytotoxicity-restricted CTLs were identified in the CNS of susceptible SJL/J (H-2s) and B10.S (H-2s) mice inoculated with DAL*-1. In contrast, no virus-specific CTLs were identified in the CNS of SJL/J and B10.S mice inoculated with wt-DA. We propose that L* inhibits the generation of H-2K-restricted virus-specific cytotoxicity in the CNS, permitting a persistent infection in susceptible strains, with subsequent inflammatory demyelination in the CNS similar to that in human multiple sclerosis.  相似文献   

7.
Transgenic (Tg) mice whose epidermal keratinocytes constitutively overexpress either B7-1 (CD80) or B7-2 (CD86) exhibited exaggerated cutaneous delayed type hypersensitivity (DTH) to haptens compared to non-Tg mice. To determine whether enhanced DTH in these Tg mice is seen in response to cutaneous fungal infections, a primary infection with Candida albicans was established by inoculating this organism on the occluded skin of Tg and non-Tg mice. These infections resolved 7 days after removal of occlusive dressing in all three groups of mice, without evidence of exaggerated inflammation in either the Tg or non-Tg mice. Only B7-2 Tg mice developed enhanced Th1-lymphocyte-mediated immune responses to C. albicans antigens after resolving this infection: enhanced footpad swelling in response to intradermal C. albicans antigens, enhanced production of mRNA encoding Th1 lymphokines in draining lymph nodes, and increased gamma interferon secreted into culture supernatants by lymph node T lymphocytes stimulated with Candida antigens in vitro. Lastly, Western blotting of sera from mice that had resolved this fungal infection indicated that only B7-2 Tg mice recognized a wide range of Candida-associated antigens. These data suggest that these two costimulatory molecules, when expressed by keratinocytes, do not deliver identical signals to C. albicans antigen-reactive Th1 lymphocytes. The enhanced immune response in B7-2 Tg mice to a cutaneous C. albicans infection demonstrates the importance of antigen presentation and costimulation in immune reactivity to fungi. Furthermore, B7-2 Tg mice may be useful in identification of protective Candida antigens.  相似文献   

8.
Wild-type herpes simplex virus 1 (HSV-1) multiplies, spreads, and rapidly destroys cells of the murine central nervous system (CNS). In contrast, mutants lacking both copies of the gamma(1)34.5- gene have been shown to be virtually lacking in virulence even after direct inoculation of high-titered virus into the CNS of susceptible mice (J. Chou, E. R. Kern, R. J. Whitley, and B. Roizman, Science 250:1262-1266, 1990). To investigate the host range and distribution of infected cells in the CNS of mice, 4- to 5-week-old mice were inoculated stereotaxically into the caudate/putamen with 3 x 10(5) PFU of the gamma(1)34.5- virus R3616. Four-micrometer-thick sections of mouse brains removed on day 3, 5, or 7 after infection were reacted with a polyclonal antibody directed primarily to structural proteins of the virus and with antibodies specific for neurons, astrocytes, or oligodendrocytes. This report shows the following: (i) most of the tissue damage caused by R3616 was at the site of injection, (ii) the virus spread by retrograde transport from the site of infection to neuronal cell nuclei at distant sites and to ependymal cells by cerebrospinal fluid, (iii) the virus infected neurons, astrocytes, oligodendrocytes, and ependymal cells and hence did not discriminate among CNS cells, (iv) viral replication in some neurons could be deduced from the observation of infected astrocytes and oligodendrocytes at distant sites, and (v) infected cells were being efficiently cleared from the nervous system by day 7 after infection. We conclude that the gamma(1)34.5- attenuation phenotype is reflected in a gross reduction in the ability of the virus to replicate and spread from cell to cell and is not due to a restricted host range. The block in viral replication appears to be a late event in viral replication.  相似文献   

9.
Poliovirus infects susceptible cells through the poliovirus receptor (PVR), which functions to bind virus and to change its conformation. These two activities are thought to be necessary for efficient poliovirus infection. How binding and conformation conversion activities contribute to the establishment of poliovirus infection was investigated. Mouse L cells expressing mouse high-affinity Fcgamma receptor molecules were established and used to study poliovirus infection mediated by mouse antipoliovirus monoclonal antibodies (MAbs) (immunoglobulin G2a [IgG2a] subtypes) or PVR-IgG2a, a chimeric molecule consisting of the extracellular moiety of PVR and the hinge and Fc portion of mouse IgG2a. The antibodies and PVR-IgG2a showed the same degree of affinity for poliovirus, but the infectivities mediated by these molecules were different. Among the molecules tested, PVR-IgG2a mediated the infection most efficiently, showing 50- to 100-fold-higher efficiency than that attained with the different MAbs. A conformational change of poliovirus was induced only by PVR-IgG2a. These results strongly suggested that some specific interaction(s) between poliovirus and the PVR is required for high-level infectivity of poliovirus in this system.  相似文献   

10.
11.
The live attenuated Sabin strains of poliovirus have proven their efficacy at inducing a good humoral and secretory antibody response in humans. The extensive characterization of poliovirus neutralization antigenic sites and the atomic resolution of the three-dimensional structure of the viral capsid have enabled the use of the most stably attenuated poliovirus strain (the Sabin type 1 strain) as a vector for the presentation of short foreign antigenic domains in place of one of its own neutralization antigenic sites. The creation of such chimeras has been achieved by manipulating poliovirus infectious cDNA and transfecting the resulting chimeric cDNAs onto susceptible cell cultures. However, this epitope-presentation system has a limitation in terms of the sequence and size of the foreign domain that can be incorporated into the poliovirus capsid without disrupting virus viability. This has led to the construction of poliovirus hybrid genomes bearing insertions of longer heterologous sequences in place of part of the poliovirus structural genes. Upon transfection onto susceptible cells providing the poliovirus structural proteins in trans (e.g. cells previously infected with the Sabin 1 strain), stocks of encapsidated RNA replicons which expressed the foreign protein could be obtained. In addition, viable recombinant viruses bearing insertions of heterologous sequences at various places into the poliovirus genome without deleting poliovirus sequences have been reported. Potential applications of these chimeric and recombinant polioviruses in the engineering of new recombinant vaccines are discussed.  相似文献   

12.
In previous studies we have shown that various stress paradigms can induce the penetration of noninvasive, attenuated viruses into the central nervous system (CNS). Since glucocorticoids levels are elevated during stress, we compared the effect of cold stress and corticosterone (CS) injection on neuroinvasiveness of a non-invasive encephalitic virus, WN-25 (West Nile). Exposure of inoculated mice to cold stress or CS resulted in high viremia and a marked increase in mortality when compared to control untreated mice. Exposure of WN-25 inoculated mice to cold treatment or CS injection led to high blood virus levels as compared to nontreated mice (3.2 and 3.1 vs > 1 log 10 PFU/ml). Cold stress or CS (5000 ng/mouse) treatment caused a mortality rate of 70% and 50% of the WN-25 inoculated mice respectively. No mortality was recorded in control inoculated groups (p < 0.05). Passive transfer serum from uninfected cold stressed mice to WN-25 inoculated nonstressed mice, resulted in similar mortality. The levels of CS in passive transferred serum from cold stressed animals was 500 ng/ml, only 2% (100 vs. 5000 ng) of the CS dose required to obtain a similar effect on viral penetration and mortality when CS was injected directly. Therefore, we concluded that CS was not the sole factor responsible for the cold stress effect on the viral infection outcome.  相似文献   

13.
BACKGROUND: Studies were conducted to determine the capability of a hydrogen peroxide gas plasma sterilization process to inactivate several types of viruses. Six test agents were used: HIV type 1, human hepatitis A virus, respiratory syncytial virus, vaccinia, herpes simplex virus type 1, and poliovirus type 2. METHODS: The test viruses were suspended in cell culture medium and dried on the bottom of sterile glass petri dishes. The inoculated dishes were processed in the hydrogen peroxide gas plasma system for half the normal sterilization cycle time. Four inoculated carriers for each virus were used in two separate half cycles. Infectivity of the test viruses and cytotoxicity to the indicator cell lines were assayed. RESULTS: The hydrogen peroxide gas plasma sterilization process produced inactivation of the six viral test agents under these experimental conditions. The reduction in viral titers ranged from 2.5 log10 to 5.5 log10, a 99.68% to 99.999% decrease. CONCLUSIONS: These results clearly demonstrate the virucidal effectiveness of the hydrogen peroxide gas plasma sterilization process against both lipid and nonlipid viruses.  相似文献   

14.
15.
Herpes simplex virus can cause acute retinal necrosis, a blinding retinal disease in man. A unilateral intracameral inoculation of herpes simplex virus type 1 (HSV-1) in mice induces retinal necrosis primarily in the contralateral eye and provides an experimental model for the disease. Previous studies suggested that a major envelope glycoprotein of HSV-1, glycoprotein C (gC), is required for retinal necrosis. We studied HSV-1 strain TN-1, a gC-deficient clinical isolated from a lesion of herpetic keratitis, for its pathogenicity in mice with an intracameral inoculation of the virus and found that TN-1 could induce severe necrotizing retinitis in both inoculated and uninoculated eyes of BALB/c mice. Inoculation with a lower dose of TN-1 resulted in a unilateral necrotizing retinitis in the uninoculated eyes. Tissue virus titration of infected mice killed at various times after inoculation detected an infectious virus in various organs including the eyeballs, trigeminal ganglia, brain and adrenal glands. Anterior chamber-associated immune deviation (ACAID) was observed in TN-1-inoculated mice as well as in mice inoculated with gC-positive laboratory strain KOS 7 days postinoculation. Our findings suggested that gC of HSV-1 is not necessary for either the induction of retinal necrosis, neural spread of the virus, or ACAID.  相似文献   

16.
17.
P-glycoprotein (P-gp), encoded by the mdr1a gene, is an ATP-dependent plasma membrane protein that is expressed in abundance on the blood-brain barrier (BBB). P-gp limits the CNS influx and retention of a variety of lipophilic compounds. We hypothesized that brain bilirubin content after an i.v. bilirubin infusion would be increased in P-gp-deficient mdr1a null mutant transgenic mice (mdr1a(-/-)) compared with controls. Eighteen mdr1a(-/-) null mutant and 18 P-gp-sufficient wild type mice (+/+) were anesthetized and 50 mg/kg bilirubin infused through the tail vein. Brain bilirubin content (mean +/- SEM) 10 min after infusion was significantly higher in mdr1a(-/-) (18.1 +/- 2.4 nmol/g) compared with (+/+) mice (10.4 +/- 1.0 nmol/g). Brain bilirubin content declined 60 min after infusion but remained higher in mdr1a(-/-) (10.3 +/- 1.4 nmol/g) compared with (+/+) mice (5.3 +/- 0.9 nmol/g). Brain bilirubin clearance did not differ between groups (t 1/2 approximately 55 min). We conclude that P-gp-deficient mdr1a(-/-) mice have significantly higher brain bilirubin content compared with controls after an i.v. bilirubin load. These data suggest that 1) bilirubin is a substrate for P-gp and 2) the increased brain bilirubin content in mdr1a(-/-) mice is due to enhanced brain bilirubin influx. We speculate that BBB P-gp provides a protective effect against bilirubin neurotoxicity by reducing brain bilirubin influx.  相似文献   

18.
Human carcinoembryonic antigen (CEA) is a well-characterized oncofetal glycoprotein whose overexpression by human carcinomas has been a target for cancer immunotherapy. Transgenic mice that express CEA as a self-antigen with a tissue distribution similar to that of humans have been developed. This study investigates: (a) the responsiveness of the CEA transgenic (CEA.Tg) mice to endogenous CEA or CEA administered as a whole protein in adjuvant; and (b) whether the presentation of CEA as a recombinant vaccinia virus could generate CEA-specific host immunity. By and large, the CEA.Tg mice were unresponsive to CEA, as shown by the lack of detectable CEA-specific serum antibodies and the inability to prime an in vitro splenic T-cell response to CEA. Furthermore, the administration of whole CEA protein in adjuvant to CEA.Tg mice failed to elicit either anti-CEA IgG titers or CEA-specific T-cell responses. Only weak anti-CEA IgM antibody titers were found in those mice. In contrast, CEA.Tg mice immunized with recombinant vaccinia virus expressing CEA generated relatively strong anti-CEA IgG antibody titers and demonstrated evidence of immunoglobulin class switching. These mice also developed T(H)1-type CEA-specific CD4+ responses and CEA peptide-specific cytotoxicity. The ability to generate CEA-specific host immunity correlated with protection of the CEA.Tg mice against a challenge with CEA-expressing tumor cells. Protection against tumor growth was accomplished with no apparent immune response directed at CEA-positive normal tissue. The results demonstrate the ability to generate an effective antitumor immune response to a tumor self-antigen by immunization with a recombinant vaccinia virus. CEA.Tg mice should be an excellent experimental model to study the effects of more aggressive immunization schemes directed at established tumors with the possible development of accompanying autoimmune responses involving normal tissues.  相似文献   

19.
The replication rates and pathogenicities of the SA 14 parent and SA 14-14-2 vaccine strains of Japanese encephalitis (JE) virus in neurons of the mouse brain following intracerebral inoculation were compared. All the mice inoculated with the SA 14 parent strain died within one week postinoculation (p.i.), whereas all the mice inoculated with the SA 14-14-2 vaccine strains survived without showing any signs of central nervous system (CNS) involvement. The virus titers of the mouse brains inoculated with the SA 14 strain reached progressively higher levels until day 5 when the animals died. On the other hand, the virus titers of the mouse brains inoculated with the SA 14-14-2 strain persisted at low levels for several days and could not be detected after 10 days. In the routine electron microscopical study, a majority of neurons in the mouse brains inoculated with the SA 14 strain contained virions and showed characteristic cytopathological changes in connection with viral replication. In the brains inoculated with the SA 14-14-2 strain, however, we failed to find neurons containing virions or showing characteristic cytopathological changes. In the alkaline phosphatase immunostaining of paraffin-embedded sections, a majority of neurons in the brains of mice inoculated with the SA 14 strain stained positively on day 5 p.i., but only a small number of neurons in scattered small foci stained positively in the brains inoculated with the SA 14-14-2 strain. The immunogold staining of Vibratome sections also revealed the identical patterns; moreover, electron microscopical examination of the immunopositive foci of the brain inoculated with the vaccine strain revealed neurons that contained virions in dilated cisternae of rough endoplasmic reticulum (RER), indicating that the SA 14-14-2 strain also replicated, albeit poorly, in neurons. The present results showed that upon intracerebral inoculation into mice the SA 14 parent strain of JE virus grew vigorously in a large number of neurons, killing the animals, while the SA 14-14-2 vaccine strain grew poorly only in a small number of neurons without causing mortality. Possible mechanisms involved in the alteration of pathogenicity between the SA 14 parent virus and the SA 14-14-2 vaccine virus are discussed.  相似文献   

20.
BACKGROUND: Polioviruses are human pathogens and the causative agents of poliomyelitis. Polioviruses are icosahedral single-stranded RNA viruses, which belong to the picornavirus family, and occur as three distinct serotypes. All three serotypes of poliovirus can infect primates, but only type 2 can infect mice. The crystal structures of a type 1 and a type 3 poliovirus are already known. Structural studies of poliovirus type 2 Lansing (PV2L) were initiated to try to enhance our understanding of the differences in host range specificity, antigenicity and receptor binding among the three serotypes of poliovirus. RESULTS: The crystal structure of the mouse neurovirulent PV2L complexed with a potent antiviral agent, SCH48973, was determined at 2.9 A resolution. Structural differences among the three poliovirus serotypes occur primarily in the loop regions of the viral coat proteins (VPs), most notably in the loops of VP1 that cluster near the fivefold axes of the capsid, where the BC loop of PV2L is disordered. Unlike other known structures of enteroviruses, the entire polypeptide chain of PV2L VP4 is visible in the electron density and RNA bases are observed stacking with conserved aromatic residues (Tyr4020 and Phe4046) of VP4. The broad-spectrum antiviral agent SCH48973 is observed binding in a pocket within the beta-barrel of VP1, in approximately the same location that natural 'pocket factors' bind to polioviruses. SCH48973 forms predominantly hydrophobic interactions with the pocket residues. CONCLUSIONS: Some of the conformational changes required for infectivity and involved in the control of capsid stability and neurovirulence in mice may occur in the vicinity of the fivefold axis of the poliovirus, where there are significant structural differences among the three poliovirus serotypes in the surface exposed loops of VP1 (BC, DE, and HI). A surface depression is located at the fivefold axis of PV2L that is not present in the other two poliovirus serotypes. The observed interaction of RNA with VP4 supports the observation that loss of VP4 ultimately leads to the loss of viral RNA. A model is proposed that suggests dual involvement of the virion fivefold and pseudo-threefold axes in receptor-mediated initiation of infection by picornaviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号