首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dejie Yu  Yu Yang  Junsheng Cheng 《Measurement》2007,40(9-10):823-830
When faults occur in the gear, energy distribution of gear vibration signals measured in time–frequency plane would be different from the distribution under the normal state. Therefore, it is possible to detect a fault by comparing the energy distribution of gear vibration signals with and without fault conditions. Hilbert–Huang transform can offer a complete and accurate energy–frequency–time distribution. On the other hand, Shannon entropy could give a useful criterion for analyzing and comparing probability distribution and offer a measure of the information of any distribution. Targeting the feature of energy distribution of gear vibration signal, the merit of entropy and Hilbert–Huang transform, the concept of time–frequency entropy based on Hilbert–Huang transform is defined and furthermore gear fault diagnosis method based on time–frequency entropy is proposed. The analysis results from simulated signals and experimental signals with normal and defective gears show that the diagnosis approach proposed could identify gear status-with or without fault accurately and effectively. However, further study is needed to the classify gear fault pattern such as crack fault or broken teeth.  相似文献   

2.
In this paper, the Wigner–Ville distributions (WVD) of vibration acceleration signals which were acquired from the cylinder head in eight different states of valve train were calculated and displayed in grey images; and the probabilistic neural networks (PNN) were directly used to classify the time–frequency images after the images were normalized. By this way, the fault diagnosis of valve train was transferred to the classification of time–frequency images. As there is no need to extract further fault features (such as eigenvalues or symptom parameters) from time–frequency distributions before classification, the fault diagnosis process is highly simplified. The experimental results show that the faults of diesel valve trains can be classified accurately by the proposed methods.  相似文献   

3.
基于小波簇的包络解调方法及其在故障诊断中的应用   总被引:1,自引:0,他引:1  
本文提出了一种基于小波簇的带通滤波和包络解调方法。通过合理地选择小波参数,用多个单类Morlet小波组成的小波簇可构成具有零相移、平顶通带及快速衰减过渡带特性的带通滤波器,可用于提取振动信号的高频自然频率成分。由于该小波簇的虚部是实部的Hilbert变换,可用于实现包络解调提取振动信号在高频谐振带的包络成分。将该方法用于干式真空泵轴承故障的诊断中,结果表明可有效地提取故障特征频率,实验结果验证了该方法的有效性。  相似文献   

4.
齿轮故障诊断技术现状与展望   总被引:3,自引:2,他引:3  
介绍了齿轮故障理论及诊断技术的现状;对齿轮故障机理研究、齿轮故障简易诊断技术、精密诊断技术、诊断技术最新发展进行了分类阐述,并对齿轮故障诊断技术的未来发展方向提出了看法。  相似文献   

5.
基于包络谱分析的滚动轴承故障诊断分析   总被引:2,自引:0,他引:2  
介绍了包络谱分析方法的基本原理,它是一种基于滤波检波的振动信号处理方法,也是诊断设备零件损伤故障的一种有效的手段,尤其对初期故障和信噪比比较第的故障信号,识别能力很强。重点分析了包络谱分析方法在轴承故障诊断中的应用。通过对滚动轴承故障诊断的实例分析,验证了包络谱分析运用于诊断设备零件损伤故障所取得的效果。  相似文献   

6.
Multiple manifolds analysis and its application to fault diagnosis   总被引:1,自引:0,他引:1  
A novel approach to fault diagnosis is proposed using multiple manifolds analysis (MMA) to extract manifold information from the vibration signals collected from a mechanical system. The basic idea of MMA is to reconstruct a manifold by embedding time series into a high-dimensional phase space. The tangent direction of the neighborhood for each point is then used to approximate its local geometry. The variation of the multiple manifolds representing different states of the mechanical system can be revealed by performing multi-way principal component analysis. The vibration signals acquired from roller bearings are employed to validate the proposed algorithms. Test results show that the proposed MMA-based approach can interpret different machine conditions and is effective to the fault diagnosis, and the MMA-based fault clustering and trend analysis algorithms have outperformed the conventional fault diagnosis methods.  相似文献   

7.
Yu Yang  Dejie Yu  Junsheng Cheng 《Measurement》2007,40(9-10):943-950
Targeting the modulation characteristics of roller bearing fault vibration signals, a method of fault feature extraction based on intrinsic mode function (IMF) envelope spectrum is proposed to overcome the limitations of conventional envelope analysis method. By utilizing the proposed feature extraction method, the disadvantages of conventional envelope analysis method such as the chosen of central frequency of filter with experience in advance, looking for spectral line of fault characteristic frequencies in envelope spectrum and so on could be overcome. Firstly, the original modulation signals are decomposed into a number of IMFs by empirical mode decomposition (EMD) method. Secondly, the ratios of amplitudes at the different fault characteristic frequencies in the envelope spectra of some IMFs that include dominant fault information are defined as the characteristic amplitude ratios. Finally, the characteristic amplitude ratios serve as the fault characteristic vectors to be input to the support vector machine (SVM) classifiers and the work condition and fault patterns of the roller bearings are identified. Since the recognition results are available directly from the output of the SVM classifiers, the proposed diagnosis method provides the possibility to fulfill the automatic recognition to machinery faults.  相似文献   

8.
9.
周浩  贾民平 《机电工程》2014,31(9):1136-1139
针对直接运用快速傅里叶变换(FFT)无法有效提取具有非线性非平稳特性的滚动轴承振动信号故障特征频率的问题,提出了一种基于经验模式分解和峭度指标的Hilbert包络解调方法.首先对滚动轴承的振动信号进行了经验模式分解(EMD),得到了包含轴承故障特征信息的各阶本征模态函数(IMF),再计算各阶IMF的峭度值,选取了峭度值较大的几阶IMF分量重构信号,并对重构信号进行了Hilbert包络解调分析,从而获得了滚动轴承的准确故障特征信息.分别对仿真模拟信号和实际滚动轴承发生内圈故障的振动信号进行了分析,清晰地得到了故障特征频率.研究结果表明,利用融合EMD、峭度系数和Hilbert包络解调的诊断方法能够快速、准确地提取滚动轴承的故障特征频率,从而可以对滚动轴承进行有效地故障诊断.  相似文献   

10.
In the condition monitoring of gear reducer, the labeled fault samples are sparse and expensive, while the unlabeled samples are plentiful and cheap. How to diagnose the faults occurring in complex and special gear reducer effectively becomes a troublesome problem in case of insufficient labeled samples or excess unlabeled samples. This paper presents a novel model for fault diagnosis based on empirical mode decomposition (EMD) and multi-class transductive support vector machine (TSVM), which is applied to diagnose the faults of the gear reducer. The experimental results obtain a very high diagnosis accuracy. Even though the number of unlabeled samples is 50 times as that of labeled samples, the mean of testing accuracy of the proposed novel method can reach at 91.62%, which distinctly precedes the testing success rates of the other similar models in the same experimental condition.  相似文献   

11.
Multicomponent AM–FM demodulation is an available method for machinery fault vibration signal analysis, so a new method for mechanical fault diagnosis based on iterated Hilbert transform (IHT) is proposed. The principle of computing the asymptotically exact multicomponent sinusoidal model for an arbitrary signal by iterating Hilbert transform is introduced, and some properties of IHT are analyzed. Theoretical analysis for the generic two-component signal shows that there are limitations in the direct estimation of instantaneous frequencies via the phase signals of the previously obtained model. Therefore, a smoothed instantaneous frequency estimation (SIFE) method based on difference operator and zero-phase digital low-pass filtering is proposed, and then the accuracy and validity of this method have been proved by the simulation results. The analysis results of the mechanical fault signals show that the weak features of these signals can be efficiently extracted with the proposed approach.  相似文献   

12.
针对齿轮箱故障振动信号大多是多分量的调幅-调频信号,而传统包络分析法又太依赖经验值选取参数的问题,对齿轮箱振动信号的分解方法、包络分析方法以及提取特征值等方面进行了研究,提出了一种基于局部均值分解(local mean de-composition,LMD)的包络谱特征值的方法。该方法首先利用局部均值分解对齿轮箱信号进行了处理,获得了包含有不同频率特征的PF(product function)分量,最后对包含有主要故障信息的第一级PF分量进行了包络分析,提取了包络谱的特征频率,以此来判别齿轮箱的工作状态和故障类型。利用齿轮箱正常状态、局部损伤、磨损故障3种齿轮箱振动信号的实例进行了验证。研究结果表明,利用LMD分解后求取包络谱特征频率的方法能够较为准确地判别齿轮箱的工作状态和故障类型。  相似文献   

13.
14.
A demodulation technique based on improvement empirical mode decomposition (EMD) is investigated in this paper. Firstly, the problem of the envelope line in EMD is introduced and the drawbacks of two classic interpolation methods, cubic spline interpolation method and cubic Hermite interpolation method are discussed; then a new envelope interpolation method called optimized rational Hermite interpolation method (O-EMD) is proposed, which has a shape controlling parameter compared with the cubic Hermite interpolation algorithm. At the same time, in order to improve the envelope approximation accuracy of local mean, the parameter determining criterion is put forward and an optimization with Genetic Algorithm (GA) is applied to automatic select the suitable shape controlling parameter in each sifting process. The effectiveness of O-EMD method is validated by the numerical simulations and an application to gear fault diagnosis. Results demonstrate that O-EMD method can improve the reliability and accuracy significantly compared with traditional EMD method.  相似文献   

15.
在讨论特征分析方法原理的基础上,针对机车走行部故障在线监测过程中存在的信号分析与处理问题,运用整周期等角度采样方法将时域振动信号转换为角域信号,采用FFT变换将角域信号变换为对应的特征频谱,通过谱估计、谱图分析得到机车走行部各零部件的故障特征谱值,再根据该特征谱值识别机车走行部各零部件的故障。然后,根据机车走行部故障诊断的实际需要,设计了一套基于特征分析方法的机车走行部故障在线诊断系统。实验结果表明,该方法能准确、可靠地识别机车走行部故障。  相似文献   

16.
The noise reduction effect of singular value decomposition (SVD) relies on the selection of effective singular values. The characteristic of singular values of normal signal and noise being studied, it is pointed out that there is a sudden change in the singular values of normal signal, but not in the ones of noise. The concept of difference spectrum of singular value is put forward, which consists of the forward differences of singular value sequence and can describe the sudden change status of singular values of a complicated signal. The automatic selection of effective singular values can be realized by the peak of the difference spectrum. If the maximum peak of difference spectrum is located in the first coordinates, it means that a strong direct current (DC) component is contained in original signal and the number of effective singular values will be determined by the second maximum peak coordinates, while what the first singular value corresponds to is the DC component, or else the number of effective singular values is determined by the maximum peak coordinates. The relationship between column number of matrix and noise removing quantity of SVD is also studied using difference spectrum and the result shows that this relationship is like a symmetrical parabola. By dint of the difference spectrum, the hidden modulation feature caused by gear vibration in headstock is isolated from a turning force signal and the fault gear is accurately located by this modulation feature.  相似文献   

17.
We propose two types of time–frequency (TF) blind source separation (BSS) methods suited to attenuated and delayed (AD) mixtures. These approaches, inspired from a method that we previously developed for linear instantaneous (LI) mixtures, almost only require each source to occur alone in a tiny TF zone, i.e. they set very limited constraints on the source sparsity and overlap, unlike various previously reported TF-BSS methods. Our approaches consist in identifying the columns of the (filtered permuted) mixing matrix in TF zones where these methods detect that a single source occurs, using TIme–Frequency Ratios Of Mixtures (hence their name TIFROM). We thus identify columns of scale coefficients and time shifts. The detection stage for time shifts uses regression lines associated to the above-mentioned TF ratios of mixtures. The detection stage for scale coefficients uses the variance of these TF ratios of mixtures, either in Constant-Time or in Constant-Frequency analysis zones. This yields two alternative BSS methods, which are resp. called AD-TIFROM-CT and AD-TIFROM-CF. These methods are especially suited to non-stationary sources. We derive their performance from many tests performed with AD mixtures of speech signals. This demonstrates that they yield major SNR improvements, i.e. about 45 dB with optimum parameters for time shifts ranging from 0 to 20 samples and above 18 dB for 200-sample time shifts.  相似文献   

18.
A novel technique adapting the time–frequency analysis has been utilized to characterize stationary and non-stationary signals from tribological interactions. This representation displays time, frequency, and signal magnitude to decipher signals emanating from such interactions. Short-time Fourier transform, Wigner, Coi–Williams, and Zhao–Atlas–Marks distributions are suited to represent stationary and non-stationary signals. Some of the most complex tribological phenomena involve head–disk interactions in magnetic recording systems. Examples drawn from practical head–disk interface tests are analyzed by using the fast Fourier transform algorithm to illustrate the dynamic features of various distributions. Time–frequency representation of output spectrums of laser doppler vibrometer (LDV), strain gage sensor, and acoustic emission (AE) sensor obtained from head–disk experiments giving evidence of stationary and non-stationary behavior are investigated.  相似文献   

19.
Based on the chirplet path pursuit and the sparse signal decomposition method, a new sparse signal decomposition method based on multi-scale chirplet is proposed and applied to the decomposition of vibration signals from gearboxes in fault diagnosis. An over-complete dictionary with multi-scale chirplets as its atoms is constructed using the method. Because of the multi-scale character, this method is superior to the traditional sparse signal decomposition method wherein only a single scale is adopted, and is more applicable to the decomposition of non-stationary signals with multi-components whose frequencies are time-varying. When there are faults in a gearbox, the vibration signals collected are usually AM-FM signals with multiple components whose frequencies vary with the rotational speed of the shaft. The meshing frequency and modulating frequency, which vary with time, can be derived by the proposed method and can be used in gearbox fault diagnosis under time-varying shaft-rotation speed conditions, where the traditional signal processing methods are always blocked. Both simulations and experiments validate the effectiveness of the proposed method.  相似文献   

20.
A method for diagnosing multiple element defects in rolling bearings has been investigated. The method combines the time-synchronous averaging and envelope spectral analysis techniques to produce spectra of synchronously averaged envelope signals with a range of synchronous frequencies. The spectra are displayed in the synchronous period versus frequency domain, to result in the sync-period versus frequency distribution. The distribution separates the characteristic defect frequencies and their associated sidebands in the synchronous period axis. This analysis technique makes it possible to detect and diagnose multiple defects appearing in different elements of rolling bearings. Another main benefit of the method is the significant noise reduction by both the enveloping and the synchronous averaging processes. Results from both computer synthesised data and experimental simulated data are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号