首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of uncompensated solution resistance on steady-state and transient voltammograms at the disk microelectrode was for the first time treated theoretically and numerically at the microscopic level using specific quasi-conformal mapping for the case of absence of electric migration. It has been shown that microscopic distributions of electric potential and current density at a disk microelectrode affect the voltammetric waves at different degrees across the electrode surface due to the variation of elementary resistances and elementary current fluxes over the electrode surface which leads to nonlinear effects that have not been discussed in existing theoretical treatments of ohmic drop at microelectrodes. The analysis of steady state voltammetry in strongly resistive media under Nernstian conditions has allowed justification by appropriate analytical derivations of the widely used potential-shift correction of steady state voltammograms by plotting i vs ( E - iR e).  相似文献   

2.
A planar electrode containing cylindrical pores with semi-circular ends is modeled using a finite element implementation of the transient nonlinear 2D Nernst– Planck–Poisson-modified Stern (NPPMS) model. The model uses a modified Stern layer to account for finite ion size. The study includes the effects of pore radius and depth on the predicted electric potential, ion concentration, surface charge density, surface energy density, and charging time. The ion concentration and electric potential are found to be sensitive to the change in radii of the pore and insensitive to the pore depth. The surface charge density is slightly higher within the pore than along the vertical flat regions of the electrode. The increase in surface area due to porosity increases the charging time.  相似文献   

3.
The transient crevice corrosion behavior of 304 stainless steel in NaCl solution has been investigated by a multiphysics coupling model.The model considers local electrochemical reactions,transport of diffe rent species,and homogeneous reactions.The moving mesh method is used to obtain the geometrical change of the crevice wall with time due to corrosion.The level set method is employed to quantitatively describe the influence of the precipitation process on electrochemical reactions.The transient crevice corrosion morphology,potential and current distributions,and pH and chloride ion concentration distributions are obtained by simulation.The effect of crevice geometry factors on the corrosion process is also discussed.The simulation results are in good agreement with the experiments,showing that the model has high reliability.  相似文献   

4.
Zhang B  Zhang Y  White HS 《Analytical chemistry》2004,76(21):6229-6238
The fabrication and electrochemical characterization of truncated cone-shaped nanopore electrodes are reported. A nanopore electrode is a Pt disk electrode embedded at the bottom of a conical pore, the circular orifice of the pore having nanometer dimensions. The electrochemical properties of nanopore electrodes with orifice radii of 39 and 74 nm are presented. Both the steady-state and transient voltammetric behavior of the nanopore electrode are reported and compared to predictions obtained using finite-element simulations. The truncated cone-shaped pore electrode possesses a unique transport property-the steady-state flux of molecules into a deep pore is limited by the restriction near the pore orifice, and thus, the steady-state current is independent of the pore depth. This characteristic is potentially useful in studying transport through nanometer-scale orifices.  相似文献   

5.
Modelling steel corrosion in concrete structures   总被引:2,自引:1,他引:1  
A comprehensive finite element model for predicting the rate of steel corrosion in concrete structures is developed. The model consists of initiation and propagation stages which are cast in the same time and space domains; i.e., processes which commence in the initiation stage, such as temperature, moisture, chloride ion, and oxygen transport within concrete, continue in the propagation stage while active corrosion occurs contemporaneously. This allows the model to include the effects of changes in exposure conditions during the propagation stage on corrosion and the effects of the corrosion reactions on the properties of concrete. The corrosion rates on steel surface are calculated by solving the Laplace's equation for electrochemical potential with appropriate boundary conditions. These boundary conditions include the relationship between overpotential and current density for the anodic and cathodic regions. Due to the non-linear nature of these boundary conditions, a non-linear solution algorithm is used. The developed model will enable designers to carry out comprehensive sensitivity analyses and to gauge the significance of variations in the values of certain parameters on the rate of corrosion in concrete structures.  相似文献   

6.
The increasing demands of energy storage require the significant improvement of current Li‐ion battery electrode materials and the development of advanced electrode materials. Thus, it is necessary to gain an in‐depth understanding of the reaction processes, degradation mechanism, and thermal decomposition mechanisms under realistic operation conditions. This understanding can be obtained by in situ/operando characterization techniques, which provide information on the structure evolution, redox mechanism, solid‐electrolyte interphase (SEI) formation, side reactions, and Li‐ion transport properties under operating conditions. Here, the recent developments in the in situ/operando techniques employed for the investigation of the structural stability, dynamic properties, chemical environment changes, and morphological evolution are described and summarized. The experimental approaches reviewed here include X‐ray, electron, neutron, optical, and scanning probes. The experimental methods and operating principles, especially the in situ cell designs, are described in detail. Representative studies of the in situ/operando techniques are summarized, and finally the major current challenges and future opportunities are discussed. Several important battery challenges are likely to benefit from these in situ/operando techniques, including the inhomogeneous reactions of high‐energy‐density cathodes, the development of safe and reversible Li metal plating, and the development of stable SEI.  相似文献   

7.
A thin-channel, planar electrode emitter device is described and utilized for the study and control of electrochemical oxidation of analytes at the emitter electrode in an electrospray ion source. For analytes that are not particularly susceptible to oxidation, the planar electrode device functions analytically in a manner similar to emitter systems that utilize the more common stainless steel tubular electrodes. For more easily oxidized analytes, the device provides the means to achieve near 100% oxidation efficiency or to completely eliminate analyte oxidation through simple and rapid changes in electrode material, electrode area, electrode covering, channel height above the electrode, or solution flow rate. Compared to the use of tubular electrodes, the planar electrode emitter system provides improved flexibility in altering the nature of the electrode area and material, as well as altering analyte mass transport to the electrode surface. Each of these parameters is critical in the control of electrochemical reactions and can be easily studied or exploited with this emitter electrode configuration.  相似文献   

8.
A new, simple, and reproducible method is described for the determination of selenium(IV) based on differential pulse cathodic stripping voltammetry. The optimized experimental conditions are as follows: selenium(IV) ions in an acidic medium (0.06 M HCl-0.07 M HNO(3)) are electrodeposited on a rotating silver disk electrode as silver selenide at -0.4 V vs SCE for 30 min; the deposit is then cathodically stripped in another solution (2 M NaOH) at a scan rate of 50 mV s(-1) to -1.2 V vs SCE. The cathodic stripping results in only a single well-defined peak at about -0.95 V vs SCE. The calibration (peak height vs selenium concentration) graph is linear up to at least 40 ng mL(-1) of selenium(IV) and passes through the origin, with a relative standard deviation of 2.7% for 20 ng mL(-1) (n = 5). The detection limit (3σ) is 0.20 ng mL(-1). The possible interferences have been evaluated. Dissolved oxygen does not affect the peak height of selenium. The electrode can be used repeatedly at least 20 times with excellent reproducibility without further polishing. The proposed method is an improvement over the existing cathodic stripping techniques.  相似文献   

9.
Single nanopore electrodes and nanopore electrode arrays have been fabricated using a focused ion beam (FIB) method. High aspect ratio pores (approximately 150-400-nm diameter and 500-nm depth) were fabricated using direct-write local ion milling of a silicon nitride layer over a buried platinum electrode. This local milling results in formation of a recessed platinum electrode at the base of each nanopore. The electrochemical properties of these nanopore metal electrodes have been characterized by voltammetry. Steady-state voltammograms were obtained for a range of array sizes as well as for single nanopore electrodes. High-resolution scanning electron microscopy imaging of the arrays showed that the pores had truncated cone, rather than cylindrical, conformations. A mathematical model describing diffusion to an electrode located at the base of a truncated conical pore was developed and applied to the analysis of the electrode geometries. The results imply that diffusion to the pore mouth is the dominant mass transport process rather than diffusion to the electrode surface at the base of the truncated cone. FIB milling thus represents a simple and convenient method for fabrication of prototype nanopore electrode arrays, with scope for applications in sensing and fundamental electrochemical studies.  相似文献   

10.
The adsorbed process of ferrocene on a glassy carbon (GC) electrode modified by multi-walled carbon nanotubes (MWNTs) and electrochemical properties of the adsorbed layers are investigated. It is found that the redox process of ferrocene in solution is controlled by diffusion and surface electrochemical steps on the MWNT/GC electrode in contrast to the diffusion-controlled process of ferrocene on the GC electrode. The adsorbed ferrocene exhibits a pair of well-defined redox waves in the potential range from − 0.2 V to 0.6 V. Interestingly, two pairs of obvious redox waves for the adsorbed ferrocene are observed at the switching potential over 0.8 V and the peak current values of redox waves in more positive potential increase with the enlarging switching potential. The electrochemical reaction model of ferrocene adsorbed on the MWNT/GC electrode is proposed.  相似文献   

11.
Because of the intensified electrochemical activities,mixed metal oxides as a representative for pseudo-capacitive materials play a key role for high performance supercapacitor electrodes.Nevertheless,low ion and electron transfer rate and poor cycling performance in the electrode practically restrict further promotion of their electrochemical performance.In order to offset the defect,a novel copper(Cu)foam-supported nickel molybdate nanosheet decorated carbon nanotube wrapped copper oxide nanowire array(NiMoO4 NSs-CNTs-CuO NWAs/Cu foam)flexible electrode is constructed.The as-prepared elec-trode demonstrates a unique core-shell holey nanostructure with a large active surface area,which can provide a large number of active sites for redox reactions.Besides,the CNTs networks supply improved conductivity,which can hasten electron transport Through this simple and efficient design method,the spatial distribution of each component in the flexible electrode is more orderly,short and fast electron transport path with low intrinsic resistance.As a result,the NiMoO4 NSs-CNTs-CuO NWAs/Cu foam as an adhesiveless supercapacitor electrode material exhibits excellent energy storage performance with high specific areal capacitance of 23.40 F cm-2 at a current density of 2 mA cm-2,which outperforms most of the flexible electrodes reported recently.The assembled asymmetric supercapacitor demonstrates an energy density up to 96.40 mW h cm-3 and a power density up to 0.4 W cm-3 under a working voltage window of 1.7 V.In addition,outstanding flexibility of up to 100° bend and good cycling stability with the capacitance retention of 82.53%after 10,000 cycles can be obtained.  相似文献   

12.
A porous Teflon ring|solid disk electrode is herein described specifically designed for acquiring online mass spectrometric measurements under well-defined forced convection created by liquid emerging from a circular nozzle impinging on the disk under wall-jet conditions. Measurements were performed for the oxidation of hydrazine, N(2)H(4), in a deaerated phosphate buffer electrolyte (pH 7) on Au, a process known to yield dinitrogen as the product. The N(2)(+) ion currents, measured by the mass spectrometer, i(N(2)(+)), as well as the corresponding polarization curves recorded simultaneously displayed very similar s-like shapes when plotted as a function of the potential applied to the Au disk. In fact, the limiting currents observed both electrochemically and spectrometrically were found to be proportional to [N(2)H(4)]. However, the limiting values of i(N(2)(+)) did not increase monotonically with the flow rate, ν(f), reaching instead a maximum and then decreasing to values independent of ν(f). This behavior has been attributed in part to hindrances in the mass transport of gases through the porous materials.  相似文献   

13.
Y. Nakada 《Thin solid films》1982,95(2):185-193
During arc discharge between two parallel electrodes, the electrode surface is eroded by the arc. Carbon coating of the electrode surface often results in a decreased erosion. The surface structure of the arc-conditioned carbon-coated copper electrode was metallurgically characterized by the use of (1) scanning electron microscopy and (2) Auger in-depth profiling. Two different types of a.c. conditioning with varying pulse characteristics were studied.It was found that the peak current density, the pulse duration and the total number of pulses were the most important parameters in determining the metallurgical structure of the conditioned electrode surface. The vapor arcs which were produced by pulses with a high current density and short pulse duration were most effective in compacting the carbon coating and promoting good adhesion between the carbon and the copper electrode. The compaction and the adhesion are effected by a high ionic beam pressure on the cathode reaching up to 1000 atm.A lower degree of carbon penetration was effected when surface melting was produced by thermionic arcs which have a lower current density and longer pulse duration. In this case, carbon adhesion is due to the mechanical entrapment of carbon powder in the thin molten copper layer produced on the electrode surface by the arcs.  相似文献   

14.
Minimizing overpotential and generating high faradaic currents are critical issues for fast-scan voltammetry of beta-nicotinamide adenine dinucleotide (NADH) for the sensitivity of enzyme-modified electrodes based on dehydrogenases. Although NADH voltammetry exhibits high overpotential and poor voltammetric peak shape at solid electrode surfaces, modification of the electrode surface can improve the electrochemical response at carbon fibers. However, these improvements are severely degraded upon the covalent attachment of enzyme. The creation of improved electron-transfer properties and the retention of these properties throughout the enzyme attachment process is the focus of this study. A novel polishing and electrochemical pretreatment method was developed which generated a decreased overpotential and a high faradaic current at carbon-fiber electrodes for NADH. Factors that lead to a degradation of voltammetric response during the enzyme fabrication were investigated, and both the aging and the covalent modification of the pretreated surface contributed to this degradation. Attachment processes that minimized the preparation time, in turn, maximized the retention of the facile electron-transfer properties. These attachment processes included varying the surface attachment reactions for the enzyme. Preparation time reduction techniques included modeling existing techniques and then improving kinetic and mass transport issues where possible. Alternate covalent attachment methods included a direct electrochemical amine reaction and an electrochemically reductive hydrazide reaction. The surface attachment and retention of electron-transfer properties of these probes were confirmed by fluorescence and electrochemical studies.  相似文献   

15.
We have studied the process of ion flux formation in a low-pressure high-frequency capacitive discharge in the presence of a cavity on the electrode surface. If the cavity size is on the order of an electrode space charge sheath thickness, the spectrum of ions arriving at the cavity bottom surface contains a low-energy peak. The mechanism responsible for this peak is analogous to the hollow cathode effect in a dc discharge.  相似文献   

16.
Y. Li  B.C. ZhengM.K. Lei 《Vacuum》2012,86(9):1278-1283
In order to apply the inner surface modification of the tube component by plasma-based ion implantation (PBII) technique, the tube size has been characterized by introducing a characteristic parameter - the critical radius of tube (CRT) to optimize the process parameters of a grid-enhanced PBII technique for the nitrogen ion implantation onto the inner surface of an Fe-Cr-Ni stainless steel tube under the process conditions, including the plasma density of central plasma source, the steady pulse voltage, the grid electrode radius, and the processing pressure. The temporal sheath dynamics of the ion matrix sheath on the inner surface of the tube component modified by PBII were demonstrated by the collisional fluid model using the equations of ion continuity and ion motion, Poisson’s equation, and Boltzmann’s relationship of electron to determine the effective range of the process parameters. The optimum process parameters were found by the effect factors of the CRT which was bounded by the two important process parameters, i.e. the ion implantation dose and the processing time, for the engineering practice due to the available dependence on the surface modification effect in suitable costs.  相似文献   

17.
Functionally graded aluminum matrix composites (FGAMCs) are new materials with excellent capabilities for design and development of complex engineering works. In this work, FGAMCs are machined using electrical discharge machining (EDM) with the process input parameters such as pulse current, pulse on time, and zone position in brake disk. Design of experiments is used for the experimental planning with full factorial method. The selected input process parameters are optimized using gray relational analysis to minimize the electrode wear ratio, overcut, power consumption, and surface roughness. The influential studies of input process parameters on the output responses are also conducted. The optimal EDM parameter setting for achieving better output parameters is pulse current at 5 A, pulse on time at 50?µs and 45?mm zone position distance in the brake disk. The pulse current (39.40%) contributed the maximum in minimizing the output responses. Further, the surface morphology is also analyzed on the material to observe the crater formation and the erosion mechanism.  相似文献   

18.
This paper discusses continued studies and new analytical applications of a recently developed three-electrode controlled-potential electrochemical cell incorporated into an electrospray ion source (Van Berkel, G. J.; Asano, K. G.; Granger, M. C. Anal. Chem. 2004, 76, 1493-1499.). This cell contains a porous flow-through working electrode (i.e., the emitter electrode) with high surface area and auxiliary electrodes with small total surface area that are incorporated into the emitter electrode circuit to control the electrochemical reactions of analytes in the electrospray emitter. The current at the working and auxiliary electrodes, and current at the grounding points upstream and downstream of the emitter in the electrospray circuit, were recorded in this study, along with the respective mass spectra of model compound reserpine, under various operating conditions to better understand the electrochemical and electrospray operation of this emitter cell. In addition to the ability to control analyte oxidation in positive ion mode (or reduction in negative ion mode) in the electrospray emitter, this emitter cell system was shown to provide the ability to efficiently reduce analytes in positive ion mode and oxidize analytes in negative ion mode. This was demonstrated by the reduction of methylene blue in positive ion mode and oxidation of 3,4-dihydroxybenzoic acid in negative ion mode. Also, the ability to control electrochemical reactions via potential control was used to selectively ionize (oxidize) analytes with different standard electrochemical potentials within mixtures to different charge states to overcome overlapping molecular ion isotopic clusters. The analytical benefit of this ability was illustrated using a mixture of nickel and cobalt octaethylporphyrin.  相似文献   

19.
Electro-oxidation of methanol was studied on titanium and platinum modified titanium electrodes (Pt/Ti). Platinum was electro-deposited on Ti by potentiostatic and galvanostatic techniques. Electrodes prepared by the galvanostatic technique showed enhanced catalytic activity towards methanol oxidation in NaOH solution compared to those prepared by the potentiostatic method. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the surface morphology and percent composition of Pt to Ti on the electrode surface. The catalytic activity of Pt/Ti electrode is much higher than that of Pt/Pt, bulk Ti and of pure Pt, in addition to minimizing the poisoning effect. In 3.0 M NaOH and in the presence of 2.0 M MeOH, the oxidation peak current density value of methanol after the 50th cycles reached 99.4% of its value at the first cycle for electrodes prepared by the galvanostatic method compared to 94.7% for electrodes prepared by the potentiostatic method. Polarizing the modified electrode at the hydrogen evolution potential region for a certain time was found to enhance the catalytic oxidation of methanol, while the presence of thick Ti-oxide as well as Ti-hydride inhibited the process.  相似文献   

20.
Wang J  Li M  Shi Z  Li N  Gu Z 《Analytical chemistry》2002,74(9):1993-1997
The electrochemistry of horse heart cytochrome c was studied by cyclic voltammetry at a glassy carbon electrode modified with single-wall carbon nanotubes (SWNTs). A pair of well-defined redox waves was obtained in cytochrome c aqueous solution at an activated SWNT film-modified electrode. The optimal conditions for activating the SWNT film-modified electrode has been determined. The electrode reaction of cytochrome c is a diffusion-controlled process. The peak current increases linearly with the concentration of cytochrome c in the range from 3.0 x 10(-5)-7.0 x 10(-4) M. The detection limit is 1.0 x 10(-5) M. The activated SWNT film was characterized by scanning electron microscopy. Furthermore, interaction of cytochrome c with adenine was characterized by electrochemical and spectral methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号