首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
A second-site mutation that restored DNA binding to ADR1 mutants altered at different positions in the two zinc fingers was identified. This mutation (called IS1) was a conservative change of arginine 91 to lysine in a region amino terminal to the two zinc fingers and known from previous experiments to be necessary for DNA binding. IS1 increased binding to the UAS1 sequence two- to sevenfold for various ADR1 mutants and twofold for wild-type ADR1. The change of arginine 91 to glycine decreased binding twofold, suggesting that this arginine is involved in DNA binding in the wild-type protein. The increase in binding by IS1 did not involve protein-protein interactions between the two ADR1 monomers, nor did it require the presence of the sequences flanking UAS1. However, the effect of IS1 was influenced by the sequence of the first finger, suggesting that interactions between the region amino terminal to the fingers and the fingers themselves could exist. A model for the role of the amino-terminal region based on these results and sequence homologies with other DNA-binding motifs is proposed.  相似文献   

6.
7.
8.
9.
The nucleocapsid protein NCp7 of human immunodeficiency virus type 1 (HIV-1), which is necessary for the formation of infectious virions, contains two zinc fingers of the Cys-X2-Cys-X4-His-X4-Cys form. To elucidate the importance of this particular motif, well conserved in retroviruses and retroelements, we substituted the histidine residue by a cysteine in the first zinc binding domain 13VKCFNCGKEGHTARNCRA30. The structures of the mutated and native zinc complexed peptides were studied by two-dimensional 600 MHz 1H nuclear magnetic resonance (NMR) in aqueous solution. The nuclear Overhauser effects were used as constraints to determine the solution structures using DIANA software followed by AMBER energy refinement. The results show that native and mutant peptides fold into non-identical three-dimensional structures, probably accounting for the loss of retrovirus infectivity following the His-Cys point mutation.  相似文献   

10.
11.
1H NMR studies of a 30-nucleotide RNA oligonucleotide (RBE3), which contains a high-affinity binding site for Rev of the HIV-1 Rev responsive element (RRE), two derivatives of RBE3 (RBE3AA and RBE3-A), and the complex of RBE3 with peptides derived from the RNA binding domain of HIV-1 Rev, are presented. The high-affinity binding site of the RRE consists of an asymmetric internal loop and surrounding Watson-Crick base pairs. In the wild-type RRE, one of the stems is closed by a loop; this is replaced in REB3 by the stable UUCG tetraloop. NOE data suggest that the internal loop of the free RNA contains structural features that have been predicted on the basis of in vitro selection experiments [Bartel, D.P., et al. (1991) Cell 67, 529-536]. The structural features include a Gsyn.Ganti base pair, a Ganti.Aanti base pair, and a looped out U. When the Rev peptide is bound to the RNA, the base pairs in the internal loop appear to be stabilized, although the RNA chemical shifts indicate that the RNA conformation undergoes some changes when bound by Rev peptide.  相似文献   

12.
Members of the cysteine and glycine-rich protein (CRP) family (CRP1, CRP2, and CRP3) contain two zinc-binding LIM domains, LIM1 and LIM2, and are implicated in diverse cellular processes linked to differentiation, growth control and pathogenesis. The solution structure of an 81-amino acid recombinant peptide encompassing the amino-terminal LIM1 domain of quail CRP2 has been determined by 2D and 3D homo- and heteronuclear NMR spectroscopy. The LIM1 domain consists of two zinc binding sites of the CCHC and the CCCC type, respectively, which both contain two orthogonally arranged antiparallel beta-sheets and which are packed together by a hydrophobic core composed of residues from the zinc finger loop regions. The CCCC zinc finger is followed by a short alpha-helical stretch. The structural analysis revealed that the global fold of LIM1 closely resembles the recently determined solution structures of the carboxyl-terminal LIM2 domains of quail CRP2 and chicken CRP1, and that LIM1 and LIM2 are independently folded structural and presumably functional domains of CRP proteins. To explore the dynamical properties of CRP proteins, we have used 15N relaxation values (T1, T2, and nuclear Overhauser effect (NOE) to describe the dynamical behavior of a LIM domain. A model-free analysis revealed local variations in mobility along the backbone of the quail CRP2 LIM1 motif. Slow motions are evident in turn regions located between the various antiparallel beta-sheets or between their strands. By use of an extended motional model, fast backbone motions were detected for backbone amide NH groups of hydrophobic residues located in the core region of the LIM1 domain. These findings point to a flexible hydrophobic core in the LIM1 domain allowing residual relative mobility of the two zinc fingers, which might be important to optimize the LIM1 interface for interaction with its physiological target molecule(s) and to compensate enthalpically for the entropy loss upon binding.  相似文献   

13.
The retroviral nucleocapsid (NC) protein is a multifunctional protein essential for RNA genome packaging and viral infectivity. The NC protein, NCp8, of the human immunodeficiency virus type-II (HIV-2) is a 49 amino acid peptide containing two zinc fingers, of the type C-X2-C-X4-H-X4-C, connected by seven amino acid residues, called the "basic amino acid cluster." It has been shown that the N-terminal zinc finger flanked by the basic amino acid cluster is the minimal active domain for the specific binding to viral RNA and other functions. However, the structure-activity relationships of NCp8 have not been investigated in detail. In the present study, the three-dimensional structure of a 29 amino acid peptide, including the minimal active domain (NCp8-fl), was determined by two-dimensional 1H NMR spectroscopy with simulated annealing calculations. A total of 15 converged structures of NCp8-fl were obtained on the basis of 355 experimental constraints, including 343 distance constraints obtained from nuclear Overhauser effect connectivities, 12 torsion angle (phi, chi1) constraints, and four constraints for zinc binding. The root-mean-square deviation of the 15 converged structures was 0.29 +/- 0.04 A for the backbone atoms (N, C(alpha), C) and 1.27 +/- 0.13 A for all heavy atoms. Interestingly, the basic amino acid cluster itself was defined well, with a loop-like conformation in which three arginine residues in the cluster and one arginine residue in the zinc finger are located approximately in the same plane of the molecule and are exposed to the solvent. The structure-activity relationships are discussed on the basis of the comparison of this well-defined structure with those of other NC proteins.  相似文献   

14.
To investigate the molecular mechanisms involved in paramyxovirus-induced cell fusion, the function and structure of synthetic peptide analogs of the sequence from the leucine zipper region (heptad repeat region 2) of the Newcastle disease virus fusion protein (F) were characterized. As previously reported (Young et al., Virology, 238, 291), a peptide with the sequence ALDKLEESNSKLDKVNVKLT (amino acids 478-497 of the F protein) inhibited syncytia formation after transfection of Cos cells with the hemagglutinin-neuraminidase and F protein cDNAs. A peptide analog which had an alanine residue in place of the first leucine residue in the zipper motif (ALDKAEESNSKLDKVNVKLT) retained inhibitory activity but less than the original peptide. Further loss in activity was observed in a peptide in which two of the leucine residues were replaced with alanine (ALDKAEESNSKADKVNVKLT), and a peptide which had all leucine residues in the zipper motif replaced with alanine (ALDKAEESNSKADKVNVKLT) had no inhibitory activity. The three-dimensional conformations of these peptides in aqueous solution were determined through the use of nuclear magnetic spectroscopy and molecular modeling. Results showed that while the wild-type peptide formed a helix with properties between an alpha-helix and a 3(10) helix with leucine residues aligned along one face of the helix, progressive substitution of leucine residues with alanine resulted in the progressive loss of helical structure. The results suggest that alterations of leucine residues in the zipper motif disrupt secondary structure of the peptide and that this structure is critical to the inhibitory activity of the peptide.  相似文献   

15.
The influence of an amino acid on the stability of alpha-helical structure depends on the position of the residue in the helix with respect to the ends. Short alpha helices in proteins are stabilized both by H-bonding of the main-chain NH and CO groups and by capping interactions between side chains and unfulfilled peptide groups at the N and C termini. Peptide models based on consensus position-dependent helix sequences allow one to model capping effects in isolated helices and to establish a base line for these interactions in proteins. We report here an extended series of substitutions in the cap positions of our peptide models and the solution structure of peptide S3, with serine at the N-cap position defined as the N-terminal residue with partly helix and partly coil conformation. The resulting model, determined by 2D 1H NMR, is consistent with a structure at the N-cap involving H-bonding between the serine gamma oxygen and the peptide NH of the glutamic acid residue three amino acids toward the C terminus. A bifurcated H-bond of Ser O gamma with the NH of Asp5 is possible also, since this group is within interacting distance. This provides direct evidence that specific side-chain interactions with the main chain stabilize isolated alpha-helical structure.  相似文献   

16.
17.
Cysteine 39 of Escherichia coli primase is the most chemically reactive cysteine. Its high chemical reactivity is likely due to its proximity to primase's zinc, which is probably ligated to the adjacent residues 40-62. The zinc may stabilize the deprotonated form of cysteine 39 to make it chemically reactive. Primase is rapidly, site-specifically modified by fluorescein maleimide (FM) at this cysteine. Modification with FM at this residue does not lead to any activity loss in a coupled RNA/DNA synthesis assay, indicating that it is not a catalytically essential residue. In contrast, iodoacetamidefluorescein (IAF) modifies cysteine 39 more slowly and stoichiometrically inhibits activity. It was not clear why these two similar fluorescent dyes should have such different inhibitory effects when attached to the same cysteine. The IAF inhibition must be due to some property of the link between the fluorescein and the cysteine because that is how it differs from FM. The pKa's of the fluoresceins from both FM- and IAF-modified primase are strongly shifted to lower values (approximately 5.4) compared to free fluorescein. These results strongly suggest that the deprotonated form of the fluoresceins are stabilized on primase by a strong interaction with the adjacent zinc in the zinc finger motif. The ability to place a noninhibitory FM at this site will be of great assistance in fluorescence energy transfer studies since the distances established to cysteine 39 will reflect the distance to the essential zinc finger motif.  相似文献   

18.
We have used two selection techniques to study sequence-specific DNA recognition by the zinc finger, a small, modular DNA-binding minidomain. We have chosen zinc fingers because they bind as independent modules and so can be linked together in a peptide designed to bind a predetermined DNA site. In this paper, we describe how a library of zinc fingers displayed on the surface of bacteriophage enables selection of fingers capable of binding to given DNA triplets. The amino acid sequences of selected fingers which bind the same triplet are compared to examine how sequence-specific DNA recognition occurs. Our results can be rationalized in terms of coded interactions between zinc fingers and DNA, involving base contacts from a few alpha-helical positions. In the paper following this one, we describe a complementary technique which confirms the identity of amino acids capable of DNA sequence discrimination from these positions.  相似文献   

19.
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid p7 protein contains two retrovirus-type zinc finger domains that are required for multiple phases of viral replication. Chelating residues (three Cys residues and one His residue) of the domains are absolutely conserved among all strains of HIV-1 and other retroviruses, and mutations in these residues in noninfectious virions. These properties establish the zinc finger domains as logical targets for antiviral chemotherapy. Selected dithiobis benzamide (R-SS-R) compounds were previously found to inhibit HIV-1 replication by mediating an electrophilic attack on the zinc fingers. Unfortunately, reaction of these disulfide-based benzamides with reducing agents yields two monomeric structures (two R-SH structures) that can dissociated and no longer react with the zinc fingers, suggesting that in vivo reduction would inactivate the compounds. Through an extensive drug discovery program of the National Cancer Institute, a nondissociable tethered dithiane compound (1,2-dithiane-4,5-diol, 1,1-dioxide, cis; NSC 624151) has been identified. This compound specifically attacks the retroviral zinc fingers, but not other antiviral targets. The lead compound demonstrated broad antiretroviral activity, ranging from field isolates and drug-resistant strains of HIV-1 to HIV-2 and simian immunodeficiency virus. The compound directly inactivated HIV-1 virions and blocked production of infectious virus from cells harboring integrated proviral DNA. NSC 624151 provides a scaffold from which medicinal chemists can develop novel compounds for the therapeutic treatment of HIV infection.  相似文献   

20.
Adenosine deaminase was overexpressed in a baculovirus system. The pure recombinant and native enzymes were identical in size, Zn2+ content, and activity. Five amino acids, in proximity to the active site, were replaced by mutagenesis. The altered enzymes were purified to homogeneity and compared to wild-type adenosine deaminase with respect to zinc content, enzymatic activity, and kinetic parameters. All but one of the alterations produced significant activity perturbations. Replacement of Cys262 produced a protein that retained at least 30-40% of wild-type activity. In contrast, replacements of His17, His214, His238, and Glu217 resulted in dramatic losses of enzyme activity. None of these mutants exhibited large variations in Km. The proteins produced from alterations of amino acids implicated in metal coordination were slightly activated by inclusion of Zn2+ throughout purification. These experiments confirm that in the active enzyme Zn2+ plays a critical role in catalysis, that a histidine or glutamate residue plays a mechanistic role in the hydrolytic deamination step, and that cysteine is not involved in the catalytic mechanism of adenosine deaminase. These data support the roles for these amino acid residues suggested from the x-ray structure of murine adenosine deaminase (Wilson, D. K., Rudolf, F. B., and Quicho, F. A. (1991) Science 252, 1278-1284).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号