共查询到19条相似文献,搜索用时 140 毫秒
1.
2.
3.
4.
以乙醇水溶液为反应介质,采用均匀沉淀法制备了纳米氧化铝,对改性尖晶石锰酸锂(LiMn2O4)进行表面包覆。考察了氧化铝包覆量、氨水浓度、氨水流速及水浴温度等因素对材料性能的影响,用X射线衍射(XRD)、扫描电镜(SEM)等手段对产物进行表征,并对材料进行物理化学性能及电化学性能检测。结果表明,以乙醇的水
溶液(乙醇与水的体积比为1∶1)为反应介质,在氧化铝包覆量为2%(质量分数)、氨水浓度为1 mol/L、氨水流速为
20 mL/min、水浴温度为55 ℃条件下包覆效果最佳。测试模拟电池在55 ℃、1C倍率下充放电循环100次,容量衰减率仅为0.06%/次,具有很好的性能。 相似文献
5.
为改善镍锰酸锂的电化学性能,以硝酸铟(In(NO3)3·H2O)为原料,通过高温固相法在镍锰酸锂电极材料表面包覆一层惰性氧化铟(In2O3),并研究不同In2O3包覆量对镍锰酸锂复合材料的电化学性能的影响。XRD测试结果显示,包覆氧化铟并不会改变正极材料LiNi0.5Mn1.5O4自身结构。当包覆量为7%时,在0.1 mA的测试电流下首次放电比容量为134.21 mAh/g,明显高于未涂覆材料(115.65 mAh/g),100次循环后容量为128.4 mAh/g,容量保持率为95.67%;在0.5 mA的测试电流条件下,首次放电比容量为78.13 mAh/g, 100次循环后比容量为56.25 mAh/g,容量保持率为64.44%。In2O3包覆起到保护材料和促进离子传导的作用,可有效提高正极材料的电化学性能。 相似文献
6.
7.
以FeSO4·7H2O和NiSO4·7H2O为原料,首先制备出晶粒细小的碱式碳酸盐前驱体,在300 ̄700℃焙烧1h后,制备出NiFe2O4纳米晶体材料。经XRD和TEM检测,粒径为3 ̄18nm,粒度均匀。 相似文献
8.
9.
以乙二醇为有机溶剂,Mn(NO3)2.4H2O和Fe(NO3)3.9H2O为无机源,采用简单的溶胶-凝胶法合成了纳米铁酸锰溶胶,将其分别在550、600、650℃焙烧2 h得到不同温度下的铁酸锰纳米粒子。通过XRD、TG、SEM、比表面积测定等对纳米铁酸锰样品进行了表征。结果表明,随着焙烧温度的增加XRD衍射峰的宽度逐渐变窄,表明样品的结晶度变好;样品具有较大的比表面积,且比表面积随温度的升高而下降。作者同时研究了吸附时间、pH等条件对纳米铁酸锰去除水源高毒性污染物Cr6+的影响。结果显示,550℃焙烧的铁酸锰样品对Cr6+的去除效果最好。 相似文献
10.
尖晶石型锰酸锂由于具有优异的安全性能且成本低廉,成为锂离子电池正极材料的研究热点。然而,由于锰溶解所导致的循环性能衰退是锰酸锂发展的主要障碍。随着温度的升高,锰溶解加剧,因而电池在高温条件下衰退更加严重。将硼酸锂包覆于锰酸锂表面,可以抑制锰的溶解。通过高能球磨的方法可将硼酸锂均匀地包覆于锰酸锂表面。X射线衍射与电化学阻抗表征结果表明,硼酸锂不会引起锰酸锂结构的变化和电池阻抗的增加。通过对界面转移电阻的研究发现,硼酸锂包覆量超过2%(质量分数)时电池的极化会增加,因此将硼酸锂的最佳包覆量控制在2%。相比于未经包覆的锰酸锂,经包覆的锰酸锂不论是对锂半电池还是对石墨全电池均表现出优异的循环性能,尤其是在60 ℃下的循环性能大大改善。软包全电池体积能量密度达到308 W·h/L,1C循环200次后容量保持率可达到94.7%。通过硼酸锂包覆可有效抑制锰酸锂的锰溶解,改善其循环性能。 相似文献
11.
采用水热法制备尖晶石结构的Co0.5Zn0.5Fe2O4纳米颗粒,再采用原位聚合法制备Co0.5Zn0.5Fe2O4/聚苯胺(PANI)复合物,对其结构及电磁性能进行了表征. 结果表明,复合物中Co0.5Zn0.5Fe2O4与PANI之间存在键的作用;在频率2~18 GHz范围内,与纯Co0.5Zn0.5Fe2O4相比,复合物的介电常数实部与虚部均增大,磁导率的实部与虚部均减小;复合物的最大吸收峰比纯Co0.5Zn0.5Fe2O4明显提高,最大吸收峰在频率11~13 GHz范围内约为15 dB. 相似文献
12.
以丙烯酰胺为聚合单体,N,N-亚甲基双丙烯酰胺为网络剂,采用高分子凝胶法制备了尖晶石型Ni0.5Zn0.5Fe2O4纳米晶. 采用FT-IR, XRD, TEM和波导等方法对产物及其电磁性能进行了表征. 结果表明,干凝胶为无定型状态,当煅烧温度为600℃时,形成结晶完整的尖晶石型Ni0.5Zn0.5Fe2O4纳米晶. 煅烧温度为600和800℃时,由透射电镜照片可知,粉体平均粒径约为10和30 nm,红外光谱显示金属?氧离子(M?O)键的特征吸收峰红移23 cm-1;纳米晶体在8.2~11 GHz的测试频率范围内具有介电损耗和磁损耗,复介电常数和复数磁导率变化都比较平稳,随煅烧温度升高而增大. 相似文献
13.
纳米光催化剂TiO_2/Fe_3O_4的制备及表征 总被引:2,自引:3,他引:2
采用两步法制备磁性负载纳米光催化剂TiO2/Fe3O4。首先用液相共沉淀法制备磁性纳米Fe3O4颗粒;然后用溶胶-凝胶法,以钛酸四正丁酯为先驱体,通过水解缩聚在Fe3O4纳米颗粒表面包覆TiO2层,得到易于磁分离回收的复合纳米光催化剂TiO2/Fe3O4,粒径大约为30 nm。利用TEM、XRD、FT-IR、VSM对Fe3O4和TiO2/Fe3O4的结构和性能进行了表征,结果表明,制备的Fe3O4为面心立方晶体(FCC)结构,具有超顺磁性;TiO2为锐钛矿相,包覆在Fe3O4的表面,形成了核-壳式结构的TiO2/Fe3O4复合光催化剂。 相似文献
14.
15.
采用溶剂热还原法,以FeCl3.6H2O和乙二醇为原料,在200℃相对低温条件下成功合成四氧化三铁微米球。通过改变实验条件,可在115~435nm有效调控Fe3O4亚微米球的粒径。采用X射线衍射仪(XRD)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)对样品的结构、粒径、形貌和组成进行了分析,并于室温测试了它的磁学性能。结果表明,产物Fe3O4亚微米球为反尖晶石结构,330nmFe3O4亚微米球的矫顽力(Hc)为6644.93A/m,饱和磁化强度(Ms)为81.2emu/g,剩余磁化强度(Mr)为14.6emu/g。研究了乙二醇和NaOH的浓度、反应时间对产物形貌的影响,结果表明,乙二醇在Fe3O4亚微米球的形成过程中起着关键作用,并提出了可能的生长机理。 相似文献
16.
17.
纳米Fe3O4颗粒的制备及应用 总被引:1,自引:0,他引:1
介绍了纳米Fe3O4颗粒的制备方法,这包括化学共沉淀法、沉淀氧化法、微乳液法、水热法、机器研磨法、多元醇法、超声沉淀法、溶胶-凝胶法等,并比较了各种制备方法的特点;在此基础上,进一步论述了纳米Fe3O4颗粒在生物医学、导电磁性材料、催化剂以及磁记录材料中的应用进展。 相似文献
18.