首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
利用Gleeble-1500热力模拟试验机,在温度为650~950℃、应变速率为0.01~5 s-1、总应变量0.7的条件下,对W-50%Cu复合材料高温塑性变形过程中的动态再结晶行为及其热加工图进行了研究和分析。试验结果表明:W-50%Cu复合材料高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的W-50%Cu复合材料高温变形本构模型较好地表征了其高温流变特性;同时,利用W-50%Cu复合材料DMM加工图分析了其变形机制和失稳机制,可确定其热加工工艺优先选择变形温度650~700℃、应变速率1~5 s-1或变形温度850~950℃、应变速率0.01~0.1 s-1。  相似文献   

2.
采用Gleeble-1500D热模拟试验机,在温度为650~950℃、应变速率为0.01~5 s-1、总应变量为0.7的条件下,对25%W-Cu和50%W-Cu(质量分数)复合材料的热变形行为及其热加工图进行研究和分析。结果表明:此两种复合材料的高温流动应力—应变曲线主要以动态再结晶为特征,峰值应力随变形温度的降低或应变速率的升高而增大;在真应力—应变曲线基础上建立的W-Cu复合材料高温变形本构模型较好地表征了其高温流变特性;同时,利用50%W-Cu复合材料DMM加工图分析了其变形机制和失稳机制,确定其热加工工艺参数应优先选择变形温度为650~700℃、应变速率为1~5 s-1,或者变形温度为850~950℃、应变速率为0.01~0.1 s-1。  相似文献   

3.
通过放电等离子烧结制备Ti-48Al-2Cr-2Nb-0.2W(摩尔分数,%)/20%(体积分数)Ta金属基复合材料。在温度1050~1200℃及应变速率1×10-3~1 S-1的条件下,通过热压缩试验研究复合材料的变形行为。建立包含真应变变量的本构方程。不同应变下,复合材料的激活能Q值为240~280 kJ/mol,低于纯TiAl的激活能。在动态材料模型的基础上,建立不同应变下的加工图,得到热加工最优参数为:1050~1100℃和0.005~0.01s-1。研究复合材料在变形过程中的显微组织演变。结果表明,动态再结晶在变形过程中起着重要作用。  相似文献   

4.
在Gleeble-1500热模拟试验机上对Ti-Al-Zr-Sn—Mo—Si—Y合金进行了热压缩试验,采用动态材料模型建立的加工图研究了在变形温度800~1100℃,变形速率在0.002~10s^-1范围内的热变形行为。结果表明:该合金的功率耗散效率的峰值区为875~925℃,应变速率为0.001-0.002s^-1,峰值效率为85%。在温度为900~1000℃,应变速率为0.1~3s^-1的区域和850~950℃,应变速率为0.001-0.01s^-1的环形区域内进行等温压缩,Ti-Al-Zr-Sn-Mo-Si—Y合金发生了动态再结晶,其功率耗散效率为40%~55%。在800~925℃,应变速率为0.03~10s^-1和温度为860~930℃,应变速率为0.003~0.03s^-1区域内易产生流变失稳现象。  相似文献   

5.
在Gleeble-1500D热模拟机上采用等温压缩实验研究Zn-8Cu-0.3Ti锌合金的高温流变行为,获得锌合金在变形温度为230~380℃、应变速率为0.01~10 s-1和变形程度为50%条件下的真应力—应变曲线,根据动态材料模型(DMM)建立锌合金的热加工图。结果表明:Zn-8Cu-0.3Ti锌合金在实验条件下具有正的应变速率敏感性,流变应力随着应变速率的增大而增大,随着变形温度的升高而减小,该合金的流变应力行为可用Arrhenius方程来描述。在本研究条件下,Zn-8Cu-0.3Ti锌合金在热变形时存在一个失稳区,即应变速率0.2 s-1以上的区域;在应变速率小于0.001 s-1和340~370℃温度范围内,最大功率耗散系数为0.53,该安全区域内合金的变形机制为动态再结晶。  相似文献   

6.
采用Gleeble-1500热模拟压缩试验机对028合金进行恒温热压缩实验,变形温度为1120~1220℃,应变速率为0.1~10 s-1,研究了028合金的热变形行为及加工图,得到了028合金最佳的热挤压工艺。结果表明,建立的本构方程能较好的预测028合金在热变形中的峰值应力;028合金在热加工过程中发生动态再结晶,随变形温度升高,动态再结晶百分数和晶粒尺寸逐渐增加,动态再结晶晶粒尺寸随应变速率增加而减小,加工图中存在两个安全区、一个失稳区和一个危险区,028合金的最佳热挤压温度为1200℃,应变速率为1 s-1。  相似文献   

7.
采用等温压缩试验法.研究原位合成TiB2(质量分数,8%)/6351复合材料在变形温度为300~550℃和应变速率为0.001~10 s-1范围内的高温变形特性.根据动态材料模型(DMM)建立TiB2/6351复合材料的加工图.采用TEM观察压缩后试样的微观组织.结果表明:加工图上的1个失稳区出现在较高应变速率(约0.631~10 s-1)区域,增强体颗粒和基体的界面处开裂甚至增强体颗粒本身发生破碎;TiB2/6351复合材料高温变形时的主要软化机制为动态回复和动态再结晶,在温度.320~380℃、应变速率0.01~0.3162 s-1区域内主要发生动态回复,功率耗散效率为17.5%~19.8%.在温度440~500℃、应变速率0.1~0.005 s-1和温度500~550℃、应变速率0.1~0.001 s-1范围为动态再结晶发生区域,功率耗散效率20%~25.6%.试验参数范围内,复合材料热变形的最佳工艺参数为:热加工温度为440~500℃,应变速率为0.1~0.005 s-1.  相似文献   

8.
孔得磊  雷丽萍  曾攀 《锻压技术》2019,44(3):122-132
为研究40Mn钢的热变形行为和动态再结晶特征,在Gleeble-1500D热模拟机上对40Mn钢进行了等温压缩实验,建立了高温流变应力模型和加工图,并采用光学显微镜观察压缩后试样的显微组织。结果表明:40Mn钢高温流变应力可采用包含动态再结晶特征的双曲正弦模型来描述。实验条件下获得的热变形平均变形激活能为300. 48 k J·mol~(-1)。40Mn钢具有动态再结晶软化特征,不同应变下加工图有明显区别。将其加工图分为加工硬化-动态回复阶段和动态再结晶阶段。在加工硬化-动态回复阶段,存在两个加工失稳区,分别位于900℃-1 s~(-1)和1200℃-1 s~(-1)附近,机理分别为绝热剪切带和晶界开裂;在动态再结晶阶段,存在一个加工失稳区,位于低温高应变速率区域,机理为绝热剪切带,存在一个最佳加工区域为温度1050~1150℃,应变速率0. 003~0. 01 s~(-1),其为动态再结晶区域。在850℃-1 s~(-1)条件下,金相图中观察到项链组织,验证了加工图的可靠性,可为热加工性能评估和锻造工艺研究提供指导。  相似文献   

9.
采用Gleeble-1500热模拟试验机对AZ61镁合金在变形温度为250~400℃、应变速率为0.001~10.000s-1条件下进行热压缩试验,研究了合金的热压缩变形行为及热加工图。结果表明,合金在高应变速率(10.000s-1)变形条件下具有较高的能量耗散率;该工艺范围内动态再结晶同时在初始晶界和孪晶上发生,合金具有较高的再结晶程度。因此,变形温度为250~400℃、应变速率为10.000s-1是较好的热加工工艺。  相似文献   

10.
Ti-46Al-2Cr-4Nb-Y合金的高温变形及加工图   总被引:1,自引:0,他引:1  
采用Gleeble-1500 热压缩模拟试验机进行压缩实验,在变形温度为1 100~1 250 ℃、应变速率为10-2~ 1 s-1的范围内,研究Ti-46Al-2Cr-4Nb-Y合金的高温变形行为,并基于动态材料模型,建立Ti-46Al-2Cr-4Nb-Y合金的加工图.结果表明:Ti-46Al-2Cr-4Nb-Y合金的高温变形流变应力对温度及应变速率敏感;流变应力随应变速率的增大而增大,随温度的升高而减小;动态再结晶是导致流变软化及稳态流变的主要原因;Ti-46Al-2Cr-4Nb-Y合金的安全热加工区域为温度1 200~1 230 ℃,应变速率10-2~10-1 s-1.  相似文献   

11.
获得准确的钛合金塑性变形特征和热加工条件,是钛合金挤压、轧制等塑性加工工艺参数选择的重要依据。本实验研究了TA15钛合金在应变速率0.01~20 s~(-1)、变形温度850~1050℃条件下的压缩变形行为、组织特征,采用Arrhenius双曲正弦函数模型推导出了TA15本构方程,基于动态材料模型建立了合金在真应变0.1~0.7时的热加工图。结果表明,在本实验的应变速率和变形温度的条件下进行压缩变形,随着变形温度的升高,合金中的α相逐渐向β相转变;随着应变速率的提高,α相向β相转变的程度逐渐减小。根据热加工图确定了合金的两个热加工安全区域:(1)变形温度950~1050℃、应变速率0.01~0.37 s~(-1);(2)变形温度875~950℃、应变速率1.65~13.5 s~(-1)。  相似文献   

12.
采用Gleeble-1500D热模拟试验机,对30%SiCp/2024A1复合材料在温度为350~500℃、应变速率为0.01~10 s-1条件下进行热压缩试验,研究该复合材料的热变形行为与热加工特征,建立热变形本构方程和加工图。结果表明,30%SiCp/2024A1复合材料的流变应力随温度升高而降低,随应变速率增大而升高,说明该复合材料是一个正应变速率敏感的材料,其热压缩变形时的流变应力可采用Zener-Hollomon参数的双曲正弦形式来描述,在本实验条件下平均热变形激活能Q为153.251 k J/mol。为了证实其潜在的可加工性,对加工图中的稳定区和失稳区进行标识,并通过微观组织得到验证。综合考虑热加工图和显微结构,变形温度为450℃,应变速率为1 s-1是复合材料适宜的热变形条件。  相似文献   

13.
研究了铸态TC21钛合金在温度1000~1150℃,应变速率0.01~10s-1条件下的高温压缩变形行为,基于动态材料模型建立了热加工图,并结合变形微观组织观察确定了该合金在实验条件下的高温变形机制及加工工艺。结果表明:TC21合金在β相区进行热压缩,主要变形机理为动态回复;Ⅰ区(高应变速率,ε≥1s-1),材料落入流动失稳区域,其微观变形机制为局部塑性流动,在制定热加工工艺时应尽量避免;Ⅱ区(1050~1120℃,0.1~1s-1),β晶粒变扁、拉长,晶界平直,为典型的动态回复,功率耗散率为32%~34%;最优加工区,Ⅲ区(低应变速率0.01~0.1s-1),功率耗散为38%~46%,拉长的β晶粒晶界上出现连续再结晶现象,首火次开坯应在高温(1150℃)附近进行,以提高铸态组织的塑性,随后开坯应在中低温进行,以得到细小均匀的β晶粒。  相似文献   

14.
通过Gleeble-3500 热模拟实验机在950~1150℃,应变速率为0.01~3s-1 条件下的近等温热模拟压缩实验,建立了NiPt 15合金的流变应力-应变曲线及其热加工图。分析了NiPt15合金不同变形阶段的功率耗散情况;阐明了NiPt15合金的损伤失稳机制;基于Prasad 动态材料模型获得了不同应变速率、温度条件下的能量耗散率和失稳系数;研究了应变量、温度和应变速率对于能量耗散率和失稳系数的影响。结果表明:(1)变形温度是影响曲线变化趋势及动态再结晶的主要因素,且变形温度越高,应变速率越低,动态再结晶越充分;(2)加工失稳机制主要包括局部塑性变形、剪切变形带以及开裂,随真应变的增大先发生局部塑性变形,而后由剪切变形带取代,并最终向开裂演变;(3)NiPt15合金较为优异的加工实验条件主要集中在非失稳区,即变形参数1000~1100℃,0.03~0.1s-1以及1100~1130℃,0.01~0.03s-1范围内,并通过显微组织分析对热加工图进行了验证。  相似文献   

15.
Hot deformation behavior of the Cu–Cr–Zr alloy was investigated using hot compressive tests in the temperature range of 650–850 °C and strain rate range of 0.001–10 s-1. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a function of strain rate and deformation temperature. The critical conditions for the occurrence of dynamic recrystallization were determined based on the alloy strain hardening rate curves. Based on the dynamic material model, the processing maps at the strains of 0.3, 0.4 and 0.5were obtained. When the true strain was 0.5, greater power dissipation efficiency was observed at 800–850 °C and under0.001–0.1 s-1, with the peak efficiency of 47%. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Based on the processing maps and microstructure evolution, the optimal hot working conditions for the Cu–Cr–Zr alloy are in the temperature range of 800–850 °C and the strain rate range of 0.001–0.1 s-1.  相似文献   

16.
在热模拟试验机上对铸态组织的阻燃钛合金(Ti-35V-15Cr-Si-C)进行了等温恒应变速率热压缩试验,温度范围为900~1200 ℃,应变速率范围为10-3~1 s-1,测试了其真应力-真应变曲线并对曲线上的应力σ突降进行了解释。基于动态材料模型建立了合金的热加工图,结合微观组织观察,确定了3个不同区域的高温变形机制:温度900~1030 ℃、应变速率小于0.1 s-1时,变形机制为动态回复和连续动态再结晶;温度大于1030 ℃、应变速率小于0.1 s-1时,功率耗散效率η出现峰值,除了动态回复和连续动态再结晶,还出现碳化物溶解现象;高应变速率(大致在0.01~1 s-1之间)区,是合金的变形失稳区域,较低温度时失稳机制为局部流动,高温失稳与碳化物溶解有关,=1 s-1时组织演变特征是项链状动态再结晶  相似文献   

17.
Zr-4合金的热变形和加工图   总被引:1,自引:0,他引:1  
在Gleeble-1500热/力模拟机上对Zr-4合金进行了热压缩试验,研究了其在温度750℃-950℃和应变速率0.005s^-1~50s^-1条件下的热变形行为。结果表明:热变形过程的流变应力可用双曲正弦本构关系来描述,平均激活能为377.79kJ/mol。根据材料动态模型,计算并分析了Zr-4合金的加工图。利用加工图确定了热变形的流变失稳区,并且获得了试验参数范围内的热变形过程的最佳工艺参数,其热加工温度930℃~950℃,应变速率为0.05s^-1~0.8s^-1和10s^-1-30s^-1的2个区域。  相似文献   

18.
The flow stress behavior of Al-0.3Er have been studied by hot compression tests on a Gleeble-1500D thermal simulator in the temperature range of 300-450 ℃ and strain rate range of 0.001-10 s-1. The results show that the flow stress is controlled by strain rate and deformation temperature. The flow stress decreases with deformation temperature increasing and increases with strain rate increasing. The constitutive relation of Al-0.3Er under high temperature conditions can be described by hyperbolic-sine-type equation. The processing maps based on the dynamic material model (DMM) of Al-0.3Er alloy has been also established and analyzed preliminarily. The highest efficiency of power dissipation is at the temperature range of 415-450 ℃ and in the strain rate range of 0.001-0.076 s-1 and 0.347-0.390 s-1, which is optimum working domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号