首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of components placement, the buck-boost and diagonal half-bridge forward converters are combined to create a novel single-stage high power factor correction (HPFC) diagonal half-bridge forward converter. When both the PFC cell and dc–dc cell operate in DCM, the proposed converter can achieve HPFC and lower voltage stress of the bulk capacitor. The circuit analysis of the proposed converter operating in$ DCM+ DCM$mode is presented. In order to design controllers for the output voltage regulation, the ac small-signal model of the proposed converter is derived by the averaging method. Based on the derived model, the proportional integral (PI) controller and minor-loop controller are then designed. The simulation and experimental results show that the proposed converter with the minor-loop controller has faster output voltage regulation than that with the PI controller despite the variations of line voltage and load. Finally, a 100-W prototype of the proposed ac–dc converter is implemented and the theoretical result is experimentally verified.  相似文献   

2.
A new multilevel matrix converter that can be applied to medium or high voltage ac drives is presented to alleviate harmonic components in the output voltage. The proposed converter contains six flying capacitors to balance the voltage distribution of series connection bidirectional switch modules and provide middle voltage levels. Stable flying capacitors voltage must be maintained to facilitate the operation of the converter. When the converter is working, the voltage of flying capacitors can be controlled by swapping two switching modes with opposite charging current corresponding to each middle voltage levels. A simple output voltage vector synthesis method is described and utilized. The operation and commutation strategies are discussed. Simulations and experiments are carried out to validate the proposed converter. Comparisons are made between proposed converter and conventional matrix converter.  相似文献   

3.
A single-stage power factor correction ac/dc converter based on zero voltage switching (ZVS) full bridge topology with two series-connected transformers is proposed in this paper. The proposed converter offers a very wide ZVS range due to the configuration of two series-connected transformers. It features a high efficiency over wide load ranges. Furthermore, it shows the low voltage stress on a dc link capacitor. The proposed converter also gives the high power factor and low input current harmonics complied with IEC 61000-3-2 Class D requirements by integrating a boost stage operated in a discontinuous current mode. The ZVS conditions, large signal modeling, and design procedure are discussed in detail. Experimental results are presented to show the validity of the proposed converter.  相似文献   

4.
Bidirectional phase-shifted DC-DC converter   总被引:2,自引:0,他引:2  
A novel ZVS phase-shifted DC-DC converter is proposed. The converter operates at a constant switching frequency and the voltage conversion ratio is regulated by phase-shift control. It has bidirectional power flow capability and synchronous rectification, hence the on-state voltage drop of the devices is small. This is an ideal candidate for electric vehicles (EVs)  相似文献   

5.
A new isolated boost DC-to-DC converter suitable for low input voltage application is proposed. It features low switch current stresses, a wide input voltage range, and inherent inrush current protection, essential for the design of a low-to-high voltage conversion circuits. A comparative analysis and experimental results are presented to demonstrate the validity of the proposed converter  相似文献   

6.
A surge protection design with surge-to-digital converter is proposed to provide the surge protection for microelectronic products with more flexible applications. The proposed surge-to-digital converter can transfer the occurrences of the surge events into digital output codes by classifying the voltage levels of surge events. It can be used to avoid unwanted power-on reset action, redundant power consumption, or unexpected soft errors, achieving the stability improvement of microelectronic systems. With this surge-to-digital converter, a surge protection design against a surge test of 25 V can clamp the peak voltage of VDD from 22.2 V to 5.6 V. The proposed converter has been verified in a 0.18-μm CMOS process.  相似文献   

7.
This paper presents a carrier-based modulation method for a matrix converter. By using the offset voltage and changing the slope of carrier, it is possible to synthesize the sinusoidal input currents with the unity power factor and desired output voltages. The proposed method is equivalent to the so called space vector pulsewidth modulation method. The proposed method uses a new point of view to understand the matrix converter modulation method such as the voltage source inverter (VSI) modulation method. Using the proposed method, this paper presents the two-phase/three-phase modulation method and dynamic/steady-state overmodulation method for the matrix converter. These methods are well developed in the study of a VSI. By the proposed steady-state overmodulation method, it is possible to synthesize the fundamental component of output voltage to be equal to that of input voltage at the cost of some distortion of input current. The feasibility of the proposed modulation method has been verified by a computer simulation and experimental results. These results show that the proposed carrier-based modulation method can be implemented easily without any tables. It can be used for the application where a higher voltage transfer ratio is essential  相似文献   

8.
In this paper, a four-level DC/DC buck power converter is introduced. The primary application for this converter is to regulate the center capacitor voltage in a four-level inverter system. The steady-state and average-value models for the proposed converter are developed and compared in simulation. The converter was constructed in the laboratory and verified on a four-level motor drive system. It was shown that the four-level DC/DC converter provides capacitor voltage balancing and allows higher output voltage utilization from the inverter.  相似文献   

9.
This paper presents a new high-efficiency grid-connected single-phase converter for fuel cells. It consists of a two-stage power conversion topology. Since the fuel cell operates with a low voltage in a wide voltage range (25?V–45?V) this voltage must be transformed to around 350–400?V in order to be able to invert this dc power into ac power to the grid. The proposed converter consists of an isolated dc–dc converter cascaded with a single-phase H-bridge inverter. The dc–dc converter is a current-fed push-pull converter. The inverter is controlled as a standard single-phase power factor controller with resistor emulation at the output. Experimental results of converter efficiency, grid performance and fuel cell dynamic response are shown for a 1?kW prototype. The proposed converter exhibits a high efficiency in a wide power range (higher than 92%) and the inverter operates with a near-unity power factor and a low current THD.  相似文献   

10.
In this paper, the small-signal mathematical model of a zero-current-zero-voltage-transition (ZCZVT) soft-switching boost power converter is proposed. It shows that the ZCZVT boost converter exhibits better dynamic behavior than the conventional pulsewidth modulated boost converter. The input-to-output voltage conversion ratio of the ZCZVT soft-switching converters lies in a range which is related to the load. Based on the derived model, a classical controller and a modified integral variable structure controller are designed to achieve output voltage regulation and line voltage disturbance rejection. The experimental results regarding converters performances for two controllers are compared by experimental results.  相似文献   

11.
无直流电压传感器的单相APFC变换器   总被引:1,自引:0,他引:1  
文章对一种只检测交流输入电压而不需要检测输出直流电压的简化单相PFC变换器进行了理论分析和研究。在构建控制电路时,不需要常规PFC变换器中的输出电压传感器和输入电流传感器。PFC变换器的主电路为整流电路的直流侧接一级Boost电路。在控制电路中,使用电感L、等效负载电阻Rd等电路参数产生正弦电流波形基准,输出电压直接由控制量Kd(=Ed/Ea)来调节。通过控制,可以得到恒定的直流输出电压和与交流输入电压同相位的正弦电流波形。仿真结果证明了该变换器的可行性。  相似文献   

12.
A boost converter for piezoelectric actuator driving system in haptic smartphones is proposed and implemented using a 0.35 μm BCDMOS process. The designed boost converter generates extremely high output voltage from a low-voltage battery supply. The boost converter provides stable power for the piezoelectric actuator with the peak-current control technique. The minimum variation of the output ripple variation can be achieved by the designed current-sensing and peak-current control circuits. The supply voltage of the boost converter is 2.7–4.2 V and the maximum output voltage is up to 80 V. The complete piezoelectric actuator driving system consists of a serial interface, SRAM, and signal-shaping logic as well as the boost converter. It also includes the resistor-string digital-to-analog converter and high voltage piezoelectric actuator driver (PZ driver). The fabricated chip size is 2,100 × 2,200 μm, including bonding pads.  相似文献   

13.
A new topology for unipolar brushless DC motor drive with high power factor   总被引:1,自引:0,他引:1  
A new converter topology is proposed for driving a permanent magnet brushless DC (BLDC) motor with unipolar currents. It is based on a front-end single-ended primary inductance converter (SEPIC) and a switch in series with each phase. All the switches are ground-referenced, which simplifies their gate drives. The available input voltage can be boosted for better current regulation, which is an advantage for low voltage applications. For operation with an AC supply, the SEPIC converter is designed to operate in the discontinuous conduction mode. In this operation mode, it approximates a voltage follower and the line current follows the line voltage waveform to a certain extent. The reduction in low-order harmonics and improved power factor is achieved without the use of any voltage or current sensors. The simplicity and reduced parts count of the proposed topology make it an attractive low-cost choice for many variable speed drive applications.  相似文献   

14.
A new single-stage AC-DC power converter based on a half-bridge converter suitable for low-power applications is proposed. The proposed converter offers high power factor and direct conversion from the line voltage to an isolated DC output voltage. High power factor is achieved by adding a resonant circuit between the rectifying diodes and half-bridge leg. For soft switching, a half-bridge series-loaded resonant converter is adopted as a DC-DC converter part. A prototype is built and tested to show the validity of the proposed converter  相似文献   

15.
A novel bootstrap driver circuit applied to high voltage buck DC–DC converter is proposed. The gate driver voltage of the high side switch is regulated by a feedback loop to obtain accurate and stable bootstrapped voltage. The charging current of bootstrap capacitor is provided by the input power of the DC–DC converter directly instead of internal low voltage power source, so larger driver capability of the proposed circuit can be achieved. The bootstrap driver circuit starts to charge the bootstrap capacitor before the switch node SW drop to zero voltage at high-side switch off-time. Thus inadequate bootstrap voltage is avoided. The proposed circuit has been implemented in a high voltage buck DC–DC converter with 0.6 µm 40 V CDMOS process. The experimental results show that the bootstrap driver circuit provides 5 V stable bootstrap voltage with higher drive capability to drive high side switch. The proposed circuit is suitable for high voltage, large current buck DC–DC converter.  相似文献   

16.
This paper presents a new single-stage power factor correction ac/dc converter based on a three-level half-bridge resonant converter topology. The proposed circuit integrates the operation of the boost power factor preregulator and the three-level resonant dc/dc converter. A variable-frequency asymmetrical pulsewidth modulation controller is proposed for this converter. This control technique is based on two integrated control loops: the output voltage is regulated by controlling the switching frequency of the resonant converter, whereas the dc-bus voltage and input current are regulated by means of duty cycle control of the boost part of the converter. This provides a regulated output voltage and a nearly constant dc-bus voltage regardless of the loading condition; this, in turn, allows using smaller switches and consequently having a lower on resistance helping to reduce conduction losses. Zero-voltage switching is also achieved for a wide range of loading and input voltage. The resulting circuit, therefore, has high conversion efficiency making it suitable for high-power wide-input-voltage-range applications. The effectiveness of this method is verified on a 2.3-kW 48-V converter with input voltage (90–265 Vrms).   相似文献   

17.
Low-voltage-swing monolithic dc-dc conversion   总被引:1,自引:0,他引:1  
A low-voltage-swing MOSFET gate drive technique is proposed in this paper for enhancing the efficiency characteristics of high-frequency-switching dc-dc converters. The parasitic power dissipation of a dc-dc converter is reduced by lowering the voltage swing of the power transistor gate drivers. A comprehensive circuit model of the parasitic impedances of a monolithic buck converter is presented. Closed-form expressions for the total power dissipation of a low-swing buck converter are proposed. The effect of reducing the MOSFET gate voltage swings is explored with the proposed circuit model. A range of design parameters is evaluated, permitting the development of a design space for full integration of active and passive devices of a low-swing buck converter on the same die, for a target CMOS technology. The optimum gate voltage swing of a power MOSFET that maximizes efficiency is lower than a standard full voltage swing. An efficiency of 88% at a switching frequency of 102 MHz is achieved for a voltage conversion from 1.8 to 0.9 V with a low-swing dc-dc converter based on a 0.18-/spl mu/m CMOS technology. The power dissipation of a low-swing dc-dc converter is reduced by 27.9% as compared to a standard full-swing dc-dc converter.  相似文献   

18.
This paper proposed an isolated bridgeless AC–DC power factor correction (PFC) converter using a LC resonant voltage doubler rectifier. The proposed converter is based on isolated conventional single-ended primary inductance converter (SEPIC) PFC converter. The conduction loss of rectification is reduced than a conventional one because the proposed converter is designed to eliminate a full-bridge rectifier at an input stage. Moreover, for zero-current switching (ZCS) operation and low voltage stresses of output diodes, the secondary of the proposed converter is designed as voltage doubler with a LC resonant tank. Additionally, an input–output electrical isolation is provided for safety standard. In conclusion, high power factor is achieved and efficiency is improved. The operational principles, steady-state analysis and design equations of the proposed converter are described in detail. Experimental results from a 60 W prototype at a constant switching frequency 100 kHz are presented to verify the performance of the proposed converter.  相似文献   

19.
为了提高LLC谐振变换器的输入电压适应范围,提出了一种新颖的双模态LLC谐振变换器。所提出变换器的隔离变压器原边绕组中设计有一个辅助抽头,使得变压器具有两种工作变比,对应两种工作模态:低输入电压区模态和高输入电压区模态。通过检测输入电压控制高频开关,使得变换器自动选择适应当前输入电压的工作模态。文中给出了所提出变换器的详细工作原理和换流过程分析。为了避免变换器在设定的输入电压切换点附近因模态连续切换而产生的震荡,提出了一种基于电压滞环和模态保持的模态切换策略。最后,研制了一台300W的实验样机,样机输入电压为25V~60V,控制芯片为TMS320F28335,样机实验结果验证了所提出的双模态LLC谐振变换器及其模态切换策略的可行性。  相似文献   

20.
A full-bridge dc--dc converter employing a diode rectifier in the output experiences a severe voltage overshoot and oscillation problem across the diode rectifier caused by interaction between junction capacitance of the rectifier diode and leakage inductance of the transformer. The pronounced reverse-recovery current of high-power diodes significantly contributes to these issues by increasing power loss and voltage overshoot. Conventional energy recovery clamping circuits suffer from high voltage overshoot if the converter input voltage is wide. In this paper, a novel energy recovery clamp circuit is proposed to overcome this problem. The proposed circuit requires neither active switches nor lossy components. Therefore, the proposed circuit is very promising in high-voltage and high-power applications. Performance of the proposed circuit is verified both theoretically and experimentally with a 70-kW dc--dc converter.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号