首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
为深入认识二元驱油体系乳化能力和界面张力对驱油效果的影响规律,评估了7类乳化指数介于0数0.38之间、与原油界面张力在10-3数10 m N/m之间的二元复合驱油体系(a:0.3%KPS+0.1%HPAM;b:0.5%司盘/0.5%吐温+0.1%HPAM;c:0.3%ZS+0.1%HPAM;d:0.3%YC;e:0.3%HPS+0.1%HPAM;f:0.3%SP+0.1%HPAM;g:0.3%ZS+0.1%HPAM+0.4%Na2CO3)的动态乳化特性、动态界面张力与驱油效果的内在关联性。乳化特征分为5种类型:不乳化(体系f)、乳化反转(体系e)、前程乳化(a)、后程乳化(体系d)、全程乳化(体系b、c和g);界面张力特性分为7种类型:"L"型(体系a)、"—"型(体系b)、"浅碟"型(体系c)、"G"型(体系d)、"V"型(体系e)、"\"型(体系f)、"深碗"型(体系g)。岩心驱油实验表明:驱油剂的乳化能力愈强,则二次水驱后的采收率愈高。不乳化的"\"型体系(体系f)、全程乳化的"浅碟"型体系(体系c)、后程乳化的"G"型体系(体系d),二次水驱采收率分别为0.36%、4.25%和0%,体现了乳化对流度控制和界面张力对毛细管数效应的交织影响。通过对比聚合物驱和二元驱后的岩心剖面发现,二元驱后岩心中残余油分布呈"白斑"状,归因于不合理的段塞配置,使界面张力和乳化作用不足以抵消流度失控对采收率影响所致。在二元复合驱技术研究中,应优选具有超低界面张力和全程乳化能力的驱油体系,并重视驱油过程中的流度控制。图8表2参16  相似文献   

2.
测量不同矿化度下的单纯阴离子-非离子表面活性剂9AS-3-0与桩106-15-×18井普通稠油原油之间的界面张力,发现单纯表面活性剂的动态界面张力平衡值与动态平衡界面张力最低值基本相同;通过驱油实验发现,在实验条件下,选取了两种不同界面张力的表面活性剂体系,当界面张力较大(0.25 mN/m)时,水驱后不能提高采收率,而在界面张力较小(0.02 mN/m)的情况下,能够提高水驱后采收率4.31%,进一步验证了低界面张力是表面活性剂驱提高采收率的最基本的机理,界面张力的降低有利于洗油效率的增大,同时被洗下来的油滴堵塞流动通道,也增加了波及面积。  相似文献   

3.
油水界面张力对三元复合驱驱油效果影响的实验研究   总被引:12,自引:7,他引:5  
用组分、结构相近的同系列表面活性剂配制三元复合体系,进行不同平衡界面张力和瞬间界面张力条件下的岩心驱油实验和微观驱油实验,通过岩心驱油实验结果分析油水间平衡、瞬间界面张力对驱油效果的影响规律;通过微观驱油实验结果分析低界面张力体系能够提高驱油效率的机理。结果表明,较低的平衡和瞬间界面张力有利于三元复合体系提高采收率。其机理是:三元复合体系的低界面张力有利于水驱后剩余油的启动和运移。  相似文献   

4.
化学驱中动态界面张力现象对驱油效率的影响   总被引:22,自引:2,他引:20  
本文测定了两种原油在不同化学驱配方下的油/水动态界面张力变化。通过一系列驱油效率实验,研究了动态界面张力最低值,稳态值,油、水相粘度的变化对驱油效率的影响。实验结果表明:动态界面张力平衡值的大小控制岩心驱替过程化学驱段塞提高采收率的能力。如果仅仅动态界面张力最低值达到超低,将难以获得高的采收率。在含有聚合物的复合驱中,由于协同效应的存在,启动残余油所需的界面张力值不必要达到10^-3mN/m。聚合  相似文献   

5.
通过对BA表面活性剂复配驱油体系的界面张力和驱油效果的研究表明,单独使用BA体系降低界面张力的能力较低,且达到超低界面张力所需的Na2CO3质量浓度范围较窄;BA/异丙醇/NP表面活性剂复配体系(BF-2)降低原油界面张力的能力最优,对Na2CO3浓度适应范围较宽.模拟驱油实验表明,复配体系(BF-2)可增加原油采收率18%.在此基础上,对复配表面活性剂超低界面张力的作用机理进行了探讨.  相似文献   

6.
化学复合驱是稠油提高采收率的关键技术之一,当前复合体系研发中越发强调乳化降黏机理,形成了高效乳化体系,但是强乳化产生的驱油增量尚不清楚,难以判断乳化对驱油的实际贡献。利用性能显著不同的1#(超低界面张力复合体系)、2#(乳化复合体系)、3#(兼顾超低界面张力和乳化的双效复合体系)体系,开展了系列的界面张力、乳化性能和不同水油黏度比下的驱油对比研究。结果表明,2#乳化复合体系和3#双效复合体系较1#超低界面张力复合体系更能稳定稠油乳状液。乳化对稠油复合驱的贡献因水油黏度比的不同而存在差异:水油黏度比小于0.200时,3#双效复合体系较1#超低界面张力复合体系采收率增幅高3.6%~6.7%,乳化能够增强体系驱油能力;当水油黏度比大于等于0.200时,3种复合体系驱油效果相近,乳化的影响显著减小,甚至可以忽略。泡沫复合驱较二 元复合驱采收率增幅显著提高,且其可将稠油驱替对复合体系乳化性能要求的水油黏度比界限从0.200减小到0.150。对于稠油复合驱,应依据水油黏度比的差异,确定对复合体系性能的要求。  相似文献   

7.
针对永平油田稠油粘度大、油层厚度薄、原始含油饱和度低及热采投产后产油量低的现状,筛选出一种能使稠油在地层中发生自发乳化的降粘剂,使稠油以较低粘度的乳状液被采出,从而提高稠油的采收率。针对不同乳化降粘剂对永平油田稠油的乳化效果评价结果表明,自发乳化降粘剂NS在质量分数为2%、温度为45℃的条件下,可将油水界面张力降至10-3mN/m数量级以下,并可完全自发乳化等体积的永平油田稠油,降粘率达99.74%。NS自发乳化驱油实验结果表明,经过后续水驱后,自发乳化驱的采收率在水驱基础上提高了38.18%。  相似文献   

8.
原有复合体系评价方法存在诸多问题,如评价方法未定量、不准确、不全面等问题。应系统地提出一套评价指标和评价标准,建立评价体系,有效地判别评价方法的可靠性,以便找出提高复合体系驱油效果的主要因素,进而提高石油采收率。针对大庆油田油层具体情况,研制出相同类型、相同用量、不同分子排布的表面活性剂,实现相同碱、聚合物、表面活性剂用量时,复合体系油水界面张力特征不同。通过岩心物理模拟实验,研究具有不同界面张力特征体系驱油效果,确定界面张力与驱油效率的关系。结合驱油实验结果,得出复合体系界面张力的评价标准,指导复合体系室内配方筛选及注入体系性能优化工作。  相似文献   

9.
以中国石油冀东油田原油为研究对象,筛选并评价了具有不同界面张力及乳化效果的4组驱油体系,研究了界面张力与乳化效果对提高原油采收率的贡献。实验结果表明,油水界面张力与原油乳化效果之间没有明显的一致性,当以0.1%(w)的Na_2CO_3或0.5%(w)Na_2CO_3+0.3%(w)JS-33复配体系为驱油剂时,界面张力均可达到超低,但乳化效果较差,析水率分别高达91.7%和83.3%,而原油采收率提高值只有8.9%和12.4%;当以0.5%(w)的Na_2CO_3或0.5%(w)Na_2CO_3+0.5%(w)JS-33复配体系为驱油剂时,界面张力分别为10~(-2)和10~(-3)数量级,乳化效果较好,析水率分别为1.7%和0,原油采收率提高值达27.5%和24.4%。乳化效果好的驱油体系原油采收率提高值要高于超低界面张力体系,乳化效果相比界面张力而言对提高采收率的贡献占主要部分。  相似文献   

10.
为了明确超低界面张力(IFT)和乳化机理对稠油复合驱提高采收率的影响,研究了两种分别以超低IFT和良好乳化性为导向的复合体系的IFT、乳化性能、泡沫性能和驱油性能。结果表明,超低IFT型复合体系可将油水IFT降至2.6×10-4mN/m,但其形成乳状液的稳定性、体系起泡性和泡沫稳定性均较乳化型复合体系差,而后者仅可将油水IFT降至0.25 m N/m。尽管超低IFT型与乳化型复合体系性能相差较大,复合驱过程中,由于体系扩大波及体积能力相对较弱,两种体系提高采收率增幅相差较小。超低IFT型泡沫驱采收率增幅可达38.3%,显著高于乳化型泡沫驱的28.9%。在泡沫辅助下,超低IFT洗油机理比乳化降黏机理更为关键。超低IFT型泡沫驱驱替稠油的采收率增幅大于大段塞复合驱,前者0.3 PV化学剂用量下的增幅达38.3%,后者0.5 PV化学剂用量下的增幅仅为30.7%。超低IFT型泡沫驱是目前提高稠油采收率较好的方式,单一复合体系驱替稠油存在化学药剂的潜在浪费。图7表1参15  相似文献   

11.
原油性质对三元复合体系形成超低界面张力的影响   总被引:2,自引:0,他引:2  
着重研究了在三元复合驱过程中 ,原油性质对于三元体系形成超低界面张力的影响 ,得到了一些有意义的认识 ,为今后研究三元复合驱油机理提供了新的思路。  相似文献   

12.
奥里乳化原油的破乳脱水研究   总被引:2,自引:0,他引:2  
根据委内瑞拉奥里乳化原油的特点和加工利用的需要在实验室用瓶试法筛选出四种比较有效的奥里乳化原油破乳剂,对其中两种性能较好的破乳剂考察了稀释剂及破乳温度对奥里乳化原油破乳脱水的影响,并分析了奥里乳化原油和普通油包水原油脱水的不同之处,讨论了奥里乳化原油自然破乳及不同操作条件对脱水的影响。研究表明,奥里乳化原油破乳时,如果处于静止状态,脱水将非常迅速,如果处于搅拌或者运动状态,脱水非常困难。  相似文献   

13.
驱油剂对中间层原油乳状液稳定性的影响   总被引:1,自引:0,他引:1  
考察了孤岛油田中间层原油和外输原油的稳定性差异以及驱油剂对原油乳状液稳定性的影响.对于同一种破乳剂TA1031,在相同的脱水条件下,外输原油与中间层原油的最终脱水率分别为95.48%和78.40%,加入二元复合驱之后,脱水率分别为83.33%和70.30%.随着驱油剂浓度的增加,zeta电位的负值越来越大,乳状液稳定性...  相似文献   

14.
将全馏分重烷基苯切割成一系列窄馏分,磺化后的重烷基苯磺酸盐(HABS)按相对分子质量由小到大编号为HABS-1,3,5,7,9。以新疆八区530原油为油相,地层模拟水为水相,分别测试全馏分和窄馏分重烷基苯磺酸盐对体系界面张力和乳化性能的影响。结果表明:随着窄馏分HABS平均相对分子质量的增大,油水界面张力先减小后增大,当窄馏分HABS的相对分子质量为398(烷基碳链平均碳数为15)时,油水界面张力最低,为0.002 3 mN/m;使用HABS-3与15%的HABS-1、AEO-9复配剂,体系的乳化综合指数达到89.51%、88.70%,油水界面张力分别为0.009 8 mN/m和0.005 9 mN/m,均处于10-3 mN/m的超低水平。  相似文献   

15.
胜利原油酸性组分的结构与界面活性   总被引:7,自引:1,他引:6  
通过在硅胶中加入特殊添加剂的TLC方法,对胜利原油的总酸组分按照化学结构和相对分子质量进行了高效的分离.用红外、核磁、元素分析、相对分子质量测定、酸值等方法对各组分的结构进行了表征.测定了它们的动态界面张力并研究了化学结构与界面活性之间的关系.结果表明,酸性组分的族组成与它们的相对分子质量密切相关,并在界面张力中起决定作用.在总酸组分的相对分子质量较低的组分(Mn<500)中,酸的侧链以脂肪烃为主,表现了较强的界面活性.相对分子质量较高的组分(Mn>500), 表现了较弱的界面活性.  相似文献   

16.
通过界面张力实验,筛选了能把油水界面张力降到10-1~10-4 mN/m数量级的单一碱、油砂清洗剂RS1、RS2及复配洗油体系,测定了洗油体系在不同界面张力条件下的洗油效率。结果表明,在10-1~10-2 mN/m界面张力范围内,各种洗油体系洗油效率均小于90%。当界面张力达到10-3 mN/m的超低值时,油砂清洗剂RS1(质量分数1.2%)的最高洗油效率为95.5%。界面张力进一步降低至10-4 mN/m数量级时,碱(质量分数2.0%,m(NaOH)∶m(Na2CO3)=1∶1)/RS1(质量分数0.6%)复合洗油体系最高洗油效率为96.8%,略低于油砂清洗剂RS1(质量分数1.8%)的洗油效率,但复合洗油体系成本更低,具有更好的应用前景。  相似文献   

17.
以乙二胺作为有机碱,NaOH作为无机碱,利用乳化实验和黏度测量实验,对两种碱与稠油的乳化行为及两种碱对聚合物黏度的影响进行了研究。结果表明,乙二胺的加入基本不增加溶液矿化度,其质量分数的增加不会促使油包水乳状液的形成,且在NaCl质量分数不大于1.2%时,0.2%~1.0%的乙二胺可将稠油乳化成较稳定的水包油乳状液;而NaOH的加入会增加溶液的矿化度,即使溶液中不加NaCl,0.6%以上的NaOH会促使油包水乳状液的形成,不利于水包油乳状液的稳定,且不同NaCl质量分数下1%的NaOH溶液都会把稠油乳化成油包水乳状液。溶液中NaOH的加入会大大降低聚合物的黏度,当NaOH质量分数为1%时,聚合物的黏度会降低一半多;而乙二胺的加入基本不增加溶液矿化度,不仅不会降低聚合物黏度,反而可以使聚合物的黏度有所上升。由此可知,乙二胺在原油开采及提高原油采收率方面相对NaOH有较大优势。  相似文献   

18.
采用旋转液滴法测定了在不同碱浓度下自制的3种结构烷基芳基磺酸盐(C19-4S、C19-6S、C19-8S)与大庆六厂原油体系的油-水动态界面张力,分别考察了磺酸盐结构、强碱和弱碱浓度对油一水动态界面张力最小值(DIFT_(min))和动态界面张力平衡值(DIFT_(equ))的影响.结果表明,在各自适宜碱浓度下,3种结构烷基芳基磺酸盐均可使大庆六厂原油-表面活性剂-碱体系的油-水界面张力达到超低值(10~(-3)mN/m);随芳环在烷基芳基磺酸盐长烷链上的位置向烷链中心移动,达到DIFT_(min)、DIFT_(equ)所需的强碱或弱碱的浓度降低、时间缩短.  相似文献   

19.
 采用旋转液滴法测定了在不同碱浓度下自制的3种结构烷基芳基磺酸盐(C19-4S、C19-6S、C19-8S)与大庆六厂原油体系的油-水动态界面张力,分别考察了磺酸盐结构、强碱和弱碱浓度对油-水动态界面张力最小值(DIFTmin)和动态界面张力平衡值(DIFTequ)的影响。结果表明,在各自适宜碱浓度下,3种结构烷基芳基磺酸盐均可使大庆六厂原油-表面活性剂-碱体系的油-水界面张力达到超低值 (10-3mN/m);随芳环在烷基芳基磺酸盐长烷链上的位置向烷链中心移动,达到DIFTmin、DIFTequ所需的强碱或弱碱的浓度降低,时间缩短。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号