首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
玫瑰黄酮的提取及其清除DPPH自由基活性研究   总被引:5,自引:0,他引:5  
杨虎  张生堂  高国强 《食品科学》2012,33(24):152-155
采用正交试验研究玫瑰黄酮的最佳提取条件,同时以VC和VE为对照,评价玫瑰黄酮清除1,1-二苯基苦基苯肼(DPPH自由基)的能力。结果表明玫瑰黄酮最佳的提取条件为:乙醇体积分数60%、液料比15:1、浸提温度40℃、提取时间1.5h,此时玫瑰黄酮提取率为40.87%、DPPH自由基清除率为88.28%。玫瑰黄酮对DPPH自由基有明显的清除作用,其对DPPH自由基的清除能力小于VC大于VE。玫瑰黄酮、VC和VE清除DPPH自由基的半数抑制浓度IC50分别为12.50、7.00mg/L和13.95mg/L。  相似文献   

2.
响应面法优化毛冬青根黄酮提取条件   总被引:1,自引:0,他引:1  
以毛冬青根黄酮的提取率和其对DPPH自由基清除率为响应值,利用响应面法对毛冬青根黄酮提取工艺进行多目标同步优化。根据统计模型得出提取时间、提取温度、液料比3个因素对毛冬青根黄酮提取率和其对DPPH自由基清除率均有显著影响。由响应面三维及等高线叠加图得到毛冬青根黄酮提取率高且样品清除DPPH自由基能力强的最佳提取工艺参数为提取时间90min、液料比21:1(mL/g)、提取温度79℃;在此条件下,验证实验得到毛冬青根黄酮提取率为0.419%,毛冬青黄酮对DPPH自由基清除率为98.8%,与模型预测值非常接近。采用响应面法对毛冬青根黄酮提取条件进行优化合理可行。  相似文献   

3.
赵丹  张秀玲 《食品科技》2013,(1):232-236
为探讨酸浆宿萼黄酮的最佳提取工艺及自由基清除活性,采用响应面法对提取酸浆宿萼黄酮的关键参数进行了优化。同时以Vc作为对照,采用2种方法考察了酸浆宿萼黄酮的自由基清除能力。结果表明,酸浆宿萼黄酮的最佳提取工艺条件为:乙醇体积分数71.08%、提取温度78.46℃、提取时间6.62h、剂料比19.80mL/g,在此条件下黄酮得率为4.65%。自由基清除试验表明,酸浆宿萼黄酮能够显著的清除羟自由基和DPPH。  相似文献   

4.
以桂圆果核为研究对象,采用超声提取桂圆果核黄酮,通过单因素试验及正交试验优化确定最佳提取工艺条件,并研究其抗氧化活性。研究结果表明,桂圆果核黄酮的最佳提取工艺条件:乙醇浓度为70%、提取温度为40℃、料液比为1∶30g/mL、提取时间为60min,平均黄酮提取率为5.17%,该提取工艺简便高效,稳定可行。在一定浓度范围内,桂圆果核黄酮对DPPH自由基、ABTS+自由基、羟基自由基的清除能力以及还原力均随黄酮提取液质量浓度的升高而增强,表明桂圆果核黄酮具有一定的抗氧化活性。该结果为桂圆果核黄酮工业化提取奠定一定的理论基础。  相似文献   

5.
草果总黄酮的提取及DPPH自由基清除活性研究   总被引:1,自引:0,他引:1  
采用超声波辅助法提取草果总黄酮,通过单因素试验和正交试验优化草果黄酮的最佳提取条件,同时以VC为对照,评价草果黄酮清除1,1-二苯基-2-苦基肼(1,1-Diphenyl-2-picryl-hydrazyl,DPPH)自由基的能力。结果表明草果黄酮的最佳提取条件为:乙醇体积分数60%、料液比1∶50(g/mL)、提取温度40℃、超声功率为160 W,提取时间60 min,此时草果黄酮提取量是24.2 mg/g。草果黄酮有较强的DPPH自由基清除力,且草果黄酮抗氧化性高于VC,其IC50分别为:IC50草果黄酮12.89 mg/L,IC50VC为6.94 mg/L,草果黄酮的DPPH自由基清除率为80.5%。  相似文献   

6.
采用超声波辅助乙醇提取的方法对火麻仁中的黄酮提取工艺进行了研究,并考察了火麻仁黄酮对DPPH自由基的清除效果。单因素试验分别考察了提取时间、提取温度、超声功率、乙醇浓度、液料比对黄酮提取量和黄酮清除DPPH自由基清除效果的影响。并利用通过响应面法优化得到了火麻仁中黄酮的最佳超声辅助提取工艺条件。结果表明,火麻仁中黄酮的最佳提取工艺条件为:提取时间1.8h、提取温度80℃、超声功率240W,乙醇浓度70%、液料比35∶1,此条件下得到的黄酮提取量为4.61mg/g,对DPPH自由基的清除率为87.25%。  相似文献   

7.
本实验研究了花生茎叶黄酮的乙醇提取工艺及其抗氧化活性。以乙醇浓度、提取时间、提取温度和液料比为自变量,以花生茎叶黄酮提取量为响应值,采用四因素三水平的Box-Behnken响应面实验设计优化黄酮提取工艺。通过分析各因素的显著性和交互作用,优化得到花生茎叶黄酮最佳提取工艺条件为:乙醇浓度为49%、液料比为10∶1、提取温度为67℃、提取时间为2.4 h,此条件下黄酮提取率为(37.32±0.12)mg/g;花生茎叶黄酮浓度为500μg/m L时,其对DPPH自由基和羟自由基的清除活性分别为83.2%和99.9%,说明了花生茎叶黄酮具有较好的抗氧化活性。  相似文献   

8.
采用复合酶超声辅助提取法提取葚籽黄酮,并分析其抗氧化活性和抑菌活性。通过单因素实验和Box-Behnken响应面分析法考察不同生物酶比例、复合酶酶添加量、酶解温度、酶解时间和超声时间对黄酮得率的影响,检测提取物对DPPH自由基、羟自由基、超氧阴离子自由基的清除作用,并通过牛津杯法检测其抑菌活性。结果表明:最佳酶为2:1的果胶酶和纤维素酶组合的复合酶,最佳提取工艺条件为:复合酶添加量0.3 mg/mL、酶解温度55 ℃、酶解时间80 min、超声时间20 min。此条件下桑葚籽黄酮的提取得率为5.32 mg/g。提取所得黄酮具有较高的抗氧化活性,且抗氧化活性与黄酮质量浓度呈一定效量关系。桑葚籽黄酮对羟自由基的清除效果最强,当黄酮质量浓度为1.00 mg/mL时,其对DPPH自由基和羟自由基的清除率分别为 83.90%和87.27%,抗超氧阴离子自由基活力为165.51 U/L。桑葚籽黄酮对沙门氏菌、大肠杆菌、金黄色葡萄球菌和酵母菌均具有抑制作用,且最低抑制浓度分别为0.75、1.50、1.00和2.00 mg/mL。  相似文献   

9.
食用仙人掌黄酮的超声提取条件及其抗氧化活性的研究   总被引:9,自引:0,他引:9  
采用响应面分析法(RSA)研究了提取溶剂浓度、提取时间和料液比等食用仙人掌黄酮超声提取条件,比较了提取物粗品的体外抗氧化作用。结果表明,食用仙人掌黄酮超声提取的最佳工艺条件为:以仙人掌干粉为原料,以体积分数73.6%乙醇为溶剂,料液比1:10(m:V),提取时间18.8min。仙人掌黄酮粗提物表现出较强的清除羟自由基和1,1-二苯基苦基苯肼(DPPH)自由基的能力,其IC50值分别为4.62和7.92mg/L(以黄酮计),其清除羟自由基能力高于芦丁、硫脲、VC;清除DPPH自由基能力略低于VC而强于芦丁。  相似文献   

10.
目的:优化艾草黄酮提取工艺,并评价艾草黄酮抗氧化活性。方法:以艾草总黄酮得率、DPPH自由基清除率、OH自由基清除率为指标,确定艾草黄酮的提取方法;在单因素试验和Plackett-Burman试验基础上,通过响应面试验优化了超声—微波辅助水提法提取艾草黄酮的工艺条件。结果:最佳提取工艺条件为60 ℃水浴40 min,340 W超声27 min,600 W微波120 s,料液比1∶30 (g/mL);该条件下艾草总黄酮得率可达87.93 mg/g,DPPH自由基清除率为80.84%,OH自由基清除率为77.92%。结论:该提取方法艾草黄酮的得率显著优于传统煎煮和水浴加热提取法(P<0.05),且具有较好的抗氧化活性。  相似文献   

11.
主要探讨不同提取条件对槐花提取物清除自由基能力的影响.结果表明,70%乙醇槐花提取液的清除自由基活性物质、总酚和总黄酮的含量最高;清除超氧阴离子能力最强的提取温度为45℃,其余均为50℃;提取物总抗氧化能力、清除DPPH自由基和羟自由基能力最强的料液比是1:20,其余则是1:15;槐花经过两次提取可获得83%-95%的清除自由基活性物质、总酚和总黄酮.槐花提取物中总抗氧化能力和清除DPPH自由基能力与酚类和黄酮类物质具有较强的相关性.  相似文献   

12.
目的:优化黑老虎花总黄酮提取工艺及研究其体外抗氧化活性。方法:通过单因素实验(超声时间、料液比、乙醇浓度、超声温度)及正交试验优化黑老虎花总黄酮的最佳提取工艺;评估最优条件下黑老虎花总黄酮对ABTS、DPPH自由基的清除能力。结果:超声辅助提取最优工艺为:全开期(6月份)、超声时间45 min、料液比1:30 mg/mL、超声温度60 ℃、乙醇浓度85%,该条件下提取量为19.25 mg/g。在0.8 mg/mL,最优条件下黑老虎花总黄酮对DPPH自由基清除率为82.1%,清除能力为维生素C的87.9%;在0.4 mg/mL,对ABTS自由基清除能力与维生素C相当。黑老虎花总黄酮对DPPH、ABTS自由基的IC50分别为0.13、0.046 mg/mL。结论:该提取方法可行,提取工艺条件可靠,黑老虎花总黄酮可作为天然抗氧化剂开发来源。  相似文献   

13.
采用响应面法优化菟丝子中总黄酮的提取工艺。在单因素实验的基础上,以乙醇浓度、提取温度、料液比、提取时间为自变量,总黄酮得率为因变量,运用Box-Behnken设计-响应面优化菟丝子中总黄酮回流提取工艺。并通过菟丝子总黄酮对DPPH自由基、羟自由基和超氧阴离子自由基的清除作用来评价其抗氧化活性。结果表明:菟丝子总黄酮最佳提取工艺条件为乙醇浓度90.0%、提取温度70℃、料液比1:15 g/mL、提取时间100 min。在此条件下,菟丝子总黄酮得率为(34.65±0.02) mg/g,与模型预测值(34.37 mg/g)相对误差为0.81%,说明回流提取菟丝子总黄酮的工艺稳定可靠。菟丝子总黄酮对DPPH自由基、羟自由基和超氧阴离子的IC50分别为0.067、7.209、0.119 mg/mL,抗坏血酸对DPPH自由基、羟自由基和超氧阴离子的IC50分别为0.082、1.731、0.054 mg/mL,体外抗氧化试验结果表明,菟丝子总黄酮对DPPH自由基具有较强的清除能力,明显高于抗坏血酸;而对羟自由基、超氧阴离子具有一定的清除能力,但清除能力低于同浓度的抗坏血酸。  相似文献   

14.
黄花草总黄酮超声辅助提取工艺优化及抗氧化活性研究   总被引:1,自引:0,他引:1  
采用超声辅助法提取黄花草总黄酮,通过单因素试验和正交试验确定了总黄酮的最佳提取工艺条件,并研究了黄花草总黄酮对羟基自由基(·OH)、DPPH自由基(DPPH·)和亚硝酸盐的清除效果。结果表明:黄花草总黄酮的最佳提取工艺条件为料液比1:15 (g/mL),乙醇浓度50%,提取功率40 W,超声时间50 min,提取温度50℃,该条件下黄花草总黄酮得率为(2.711±0.002)%。黄花草总黄酮对·OH和亚硝酸盐具有明显清除能力,对DPPH·具有较强清除能力,最大清除率分别为(52.48±0.88)%,(95.58±0.28)%,(57.27±0.15)%,表明黄花草中的总黄酮具有较好的抗氧化能力。  相似文献   

15.
为探索油茶蒲的有效利用途径,采用各具5个体积分数梯度的5种有机溶剂对油茶蒲进行超声辅助浸提而得到25种粗提液,研究比较了各粗提液的总黄酮提取率和清除DPPH·的能力。结果表明:总黄酮提取率最高的5种溶剂及其对应的总黄酮提取率依次是60%丙酮溶液(6. 28%)、60%乙醇溶液(5. 24%)、80%甲醇溶液(4. 82%)、60%1,3-丁二醇溶液(4. 40%)、60%乙酸乙酯-乙醇溶液(4. 13%);清除DPPH·能力最强的5种粗提液及其对应的清除率依次是100%乙醇溶液提取物(92. 78%)、60%乙酸乙酯-乙醇溶液提取物(92. 69%)、100%1,3-丁二醇溶液提取物(89. 68%)、100%甲醇溶液提取物(86. 54%)、100%丙酮溶液提取物(81. 99%)。黄酮提取率最高的油茶蒲提取物所对应的DPPH·清除能力并不是最强的,说明油茶蒲提取物中除了黄酮以外,可能还有多酚、皂素、多糖等其他抗氧化活性成分。适合油茶蒲黄酮利用的最佳提取剂是60%乙酸乙酯-乙醇溶液,总黄酮提取率达4. 13%,所对应提取物对DPPH·清除率达92. 69%,是一种适应工业化开发利用油茶蒲黄酮的理想溶剂。  相似文献   

16.
佛手黄酮提取工艺优化及其体外抗氧化活性   总被引:2,自引:0,他引:2  
本研究通过乙醇回流法提取佛手黄酮,在单因素实验的基础上,以得率为指标,通过响应面优化分析,优化佛手总黄酮的提取工艺,并对其体外抗氧化活性进行评价。结果表明:佛手黄酮最佳提取条件为:乙醇浓度73%,提取温度80℃,提取时间90 min,料液比1:31 g/mL。在此条件下黄酮得率为1.34%;佛手黄酮对DPPH和ABTS自由基均有一定的清除作用,且呈明显的剂量效应关系,其中DPPH自由基清除率的IC50为0.8 mg/mL,ABTS自由基清除率的IC50为0.07 mg/mL。ORAC(总抗氧化能力)为20.18 μmol TE/g。以上结果表明,佛手黄酮是一种良好的天然抗氧化剂。  相似文献   

17.
王鹏  郭丽  姜喆  郭艳莉  马雪  李杨 《食品工业科技》2018,39(7):54-58,63
采用隔氧与超声波辅助相结合方式提取黑木耳中多糖和类黄酮,研究复配比例、复配液浓度、降温过程和反应时间对DPPH自由基和羟自由基清除能力的影响,并评价黑木耳多糖与类黄酮的协同抗氧化作用。结果表明,隔氧超声提取的黑木耳多糖和类黄酮含量较高,分别为3.85%和4.2 mg/100 g,两者抗氧化能力均显著(p<0.05)高于有氧超声提取法。黑木耳多糖和类黄酮复配比例为7:3时,复配液对DPPH自由基清除率达到95%,对羟自由基清除率为62%。黑木耳多糖和类黄酮复配液浓度、反应时间与DPPH自由基清除能力显著正相关(p<0.05)。复配液浓度、反应温度与羟自由基清除能力显著正相关(p<0.05)。黑木耳多糖和类黄酮复配品可提高对DPPH自由基和羟自由基清除效率,具有协同抗氧化作用。  相似文献   

18.
响应面法优化半枝莲黄酮提取工艺及体外抗氧化性分析   总被引:4,自引:0,他引:4  
陈红梅  谢翎 《食品科学》2016,37(2):45-50
研究半枝莲黄酮的提取工艺及其抗氧化活性。以黄酮得率为指标,在单因素试验的基础上,利用Box-Behnken设计四因素三水平进行响应面试验,建立各因素与响应值之间的数学模型,确定最佳提取工艺。结果表明,最佳提取工艺条件为乙醇体积分数75%、液料比40∶1(mL/g)、超声时间80 min、超声功率220 W,在此工艺条件下,半枝莲黄酮得率为11.53%。通过对1,1-二苯基-2-三硝基苯肼自由基、羟自由基清除率及还原力测定,表明半枝莲黄酮提取物具有一定的抗氧化活性。  相似文献   

19.
熊双丽  李安林 《食品科学》2010,31(22):194-197
分析超声波辅助提取对夏枯草总黄酮得率的影响,采用正交设计试验优化总黄酮提取工艺,筛选适合于分离总黄酮的大孔吸附树脂,最后研究其自由基清除活性。结果发现:超声波辅助提取不能提高夏枯草总黄酮得率,最佳提取条件为乙醇体积分数50%、料液比1:30(g/mL)、时间3h、温度80℃,得率可达5.05%;大孔吸附树脂AB-8 适合于分离夏枯草总黄酮;紫外- 可见光谱分析其可能为黄烷酮和双氢黄酮醇类;随质量浓度增加,夏枯草总黄酮的DPPH 自由基和羟自由基清除活性越接近VC,当质量浓度分别大于82μg/mL 和0.83mg/mL 时,两者的清除率都大于90%,显著高于叔丁基羟基茴香醚。  相似文献   

20.
以藜麦糠为原料,以液料比、乙醇浓度、超声时间、超声温度为4个考察因素,在单因素实验基础上,以黄酮得率为考察对象,采用Box-Benhnken中心组合设计结合响应面分析法优化藜麦糠黄酮类化合物提取工艺,并对藜麦糠黄酮类化合物体外抗氧化活性进行研究。结果表明,藜麦糠黄酮类化合物的最优提取工艺为:乙醇浓度56%,液料比20:1 mL/g,超声时间14 min,超声温度58℃,在此条件下藜麦糠黄酮类化合物的得率为0.802%。藜麦糠黄酮类化合物有较为明显的抗氧化活性,具有一定的DPPH自由基和羟自由基清除能力,且能力强弱与其质量浓度呈正相关。藜麦糠黄酮样品质量浓度为0.5 mg/mL时,其DPPH自由基清除能力为64%,羟自由基清除能力为77%。藜麦糠作为藜麦的副产品,有一定的开发利用的价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号